Page 94 - Cam Design Handbook
P. 94

THB3  8/15/03  12:58 PM  Page 82

          82                       CAM DESIGN HANDBOOK

             The displacement, velocity, and acceleration characteristics of the curves are indicated.
          The simple harmonic curve (Fig. 3.15) has a low maximum acceleration for a given rise.
          Its  acceleration  discontinuity  at  the  ends  of  the  DRD  cycle  can  be  matched  with  the
          cycloidal segments (Fig. 3.16) to produce the popular cycloidal coupling. The cycloidal
          segments are excellent choices to eliminate the acceleration curve discontinuities of any
          DRD curve by its blending segment. The eighth polynomial, Fig. 3.17, is a good choice


               y                     H – 1   y                      H – 2
                                 Ê     pqˆ                     Ê   pqˆ
                                 Á
                                                               Á
                          h  y = h 1 – cos       ˜       h  y = h sin       ˜
                                 Ë     2b¯                     Ë   2b¯
                            q                             q
                    b                             b
               y'                            y'
                                ph Ê  pqˆ                      ph Ê  pqˆ
                                  Á
                                                                 Á
                             y' =       sin         ˜      y' =       cos         ˜
                                2b Ë  2b¯                      2b Ë  2b¯
                          q                             q
              y"                                        q
                                                               2
                                 2
                                p h Ê  pqˆ                    p h Ê  pqˆ
                                   Á
                             y" =         cos        ˜   y" = –         sin        ˜
                                                                2 Á
                                   2
                                4b  Ë  2b¯                    4b  Ë  2b¯
                          q                  y"
               y                     H – 3   y                      H – 4
                                 Ê   pqˆ                        Ê     pqˆ
                                                                Á
                           h  y = h cos          ˜       h  y = h 1 – sin        ˜
                                 Á
                                 Ë   2b¯                        Ë     2b¯
                            q                             q
                    b                              b
                          q      ph Ê  pqˆ              q      ph Ê  pqˆ
                                   Á
                                                                 Á
                             y' = –       sin        ˜    y' = –       cos         ˜
                                 2b Ë  2b ¯                    2b Ë  2b¯
               y'                            y'
                          q     p h Ê  pq ˆ  y"
                                 2
                                                                     pqˆ
                                                              p h Ê
                                                               2
                           y" = –         cos      ˜      y" =           sin        ˜
                                   Á
                                                                2 Á
                                  2
                                4b  Ë  2b ¯                   4b  Ë  2b ¯
              y"                                         q
               y                     H – 5   y                      H – 6
                                h Ê     pqˆ                   h Ê     pq ˆ
                                                                Á
                                 Á
                           h  y =     1 – cos       ˜    h  y =     1 + cos      ˜
                                2 Ë     b ¯                   2 Ë      b¯
                            q                              q
                    b                              b
               y'                                        q
                                ph Ê  pqˆ                       ph Ê  pqˆ
                                                                  Á
                             y' =        sin      ˜        y' = –       sin        ˜
                                   Á
                                2b Ë  b ¯                       2b Ë  b ¯
                          q                  y'
              y"
                                                         q
                                                               2
                                 2
                          q     p h Ê  pq ˆ                   p h Ê   pq ˆ
                                                                  Á
                             y" =         cos        ˜    y" = –         cos        ˜
                                   Á
                                  2
                                2b  Ë   b¯   y"               2b  Ë   b¯
                                                                 2
            FIGURE 3.15.  Harmonic motion characteristics.
                       Note: h = total follower displacement for half-curve or full-curve action, and
                           b = cam angle for displacement h, in.
   89   90   91   92   93   94   95   96   97   98   99