Page 93 - Cam Design Handbook
P. 93

THB3  8/15/03  12:58 PM  Page 81

                                     MODIFIED CAM CURVES                    81

            Portion II
                 ˙˙ y =  A ˙
                 ˙ y =  Aq  +  ˙ y
                      2  1
                        2
                            ˙ y ¢ +
                     q
                 y =  A() 2 + q  y 1
                             1
                      2
                ˙ y =  Ab  + 2 Ab p
                 2    2    1
                y =  Ab 22 Ab b p  + 2 Ab p (1 - 2  p  )
                         +
                                       2
                      2
                 2    2      12        1
            Portion III
                 ˙˙ y =  A  cos(pq b  3 )
                           3
                 ˙ y =  Ab p  sin(pq b 3 )+  ˙ y 2
                      3
                              3
                           2
                                    ¢¢
                 y =- A(bp ) [1 -  cos(pq b  )]+ q  y
                                          ˙ y ¢¢ +
                        3              3   2    2
                ˙ y =  ˙ y
                 3  2
                                                                    (
                           2
                                                  +
                y = 2 A(b p ) +  Ab b  + 2 Abb p  +  Ab 2 2 Abb p ( (  Ab p) -12 p )
                                               2
                                                           + 2
                                                                2
                 3     3        2  3   1 3     2      12        1
            Portion IV
                 ˙˙ y =- A
                 ˙ y =- Aq  +  ˙ y
                       4  3
                 y =-[ q  2  2  ˙ y ¢¢¢ +  y
                     A() ]+ q
                        4      3    3
                ˙ y =- Ab  +  ˙ y =- Ab  +  Ab  + 2 Ab p  = 0
                 4     2  3     4    2    1
                b  = b  + b p
                       2
                 4   2   1
            Total Rise
                             h =  y = -( Ab  2  2 )+  A ( b  + 2 Ab p )b  +  y
                                 4      4      2     1   4   3
            Substituting
                                               h
                 A =
                                              2
                     - [ b 2 + b b  + bb p2  + (b p2  ) + b b  + bb p  + b 2 + bb  p
                                                               2
                                                      2
                                                                   2
                       2
                       4     2  4  1  4    3      2  3  1 3    2     12
                                        +( bp2  1 2  ) - 2  p  )]
                                               (1
               For a given total rise h for angle q 0 and any two of the b angles given one can solve
            for all angles and all values of the derivative curves.
            3.10 COUPLED CURVE SIMPLIFICATION
            This  section  presents  a  convenient  method  for  combining  segments  of  basic  curves  to
            produce  the  required  design  motion.  This  procedure  was  developed  by  Kloomok  and
            Muffley in Mabie and Ocvirk (1979), who selected three analytic functions of the simple
            harmonic, the cycloidal, and the eighth-degree polynomial (the latter described in Chapter
            4). These curves, having excellent characteristics, can be blended with constant accelera-
            tion, constant velocity, and any other curve satisfying the boundary conditions stated in
            Sec. 3.2. Figures 3.15, 3.16, and 3.17 show the three curves including both half curve seg-
            ments and full curve action in which
               h = total follower displacement for half curve or full curve action, and
               b = cam angle for displacement h, in
   88   89   90   91   92   93   94   95   96   97   98