Page 88 - Cam Design Handbook
P. 88

THB3  8/15/03  12:58 PM  Page 76

          76                       CAM DESIGN HANDBOOK

              1  q   7
          for   £  £
              8   b  8
                           È              q            Ê 4pq  p  ˆ˘
                             .
                        y =  h 028005 043990  - 0351506cos Á  -  ˜
                                  + .
                                              .
                           Í                           Ë 3 b   ¯ ˙
                           Î              b                   3  ˚
                           h È               Ê 4pq  p  ˆ˘
                       y¢ =  043990  +1 31970sin Á  +  ˜
                                     .
                              .
                          b  Í Î             Ë 3 b  3 ¯ ˙ ˚
                                 h   Ê 4pq  p  ˆ
                           .
                       y¢¢ = 5 52796  sin Á  +  ˜
                                 b  2  Ë 3 b  3  ¯
                                 h   Ê Ê  4pq  p ˆ
                      y¢¢¢ = 23 1555  cosÁ  +  ˜.
                            .
                                b 3  Ë  3 b  4 ¯
               7  q
          for   £  £  1
               8  b
                             È              q                q  ˘
                         y =  h 0 56010 0 43990  - 0 03515006sin 4p  ˙
                                    + .
                                                .
                               .
                             Í
                             Î              b                b  ˚
                            h È     Ê        q  ˆ˘
                               .
                         y¢ =  Í 043989 Á1 - cos  4p  ˜ ˙
                            b  Î    Ë        b  ¯ ˚
                                                                        (3.18)
                                   h      q
                        y¢¢ = 5 52796  sin 4p
                             .
                                  b  2    b
                                   h      q
                              .
                        y¢¢¢ = 69 4664  cos 4p  .
                                  b  3    b
          A computer solution is employed to establish the incremental displacement values and the
          characteristic curves of the action. The maximum velocity of the modified sine curve is
                    h                                 h
           ¢ y  = .1 760  ,  the maximum acceleration is  ¢¢ =y  . 5 528  ,  and the maximum jerk is
           max                               max       2
                    b                                 b
                    h
          y ¢¢¢ = 69 .47  .  The nondimensionalized displacement, velocity, and acceleration factors
           max
                    b  3
          are given in Table A-4, App. B. Figure 3.10 indicates the comparison (Erdman and Sandor,
          1997) of the cycloidal, modified trapezoidal, and modified sine curves. The data shown is
          for a 3-inch pitch diameter cam having a 2-inch rise in 6 degrees of cam rotation.
          3.8 MODIFIED CYCLOIDAL CURVE
          In this section we will reshape the cycloidal curve to improve its acceleration character-
          istics. This curve is the modified cycloidal curve that was developed by Wildt (1953).
          Figure 3.11 indicates the acceleration comparison between the true cycloidal curve and
          the Wildt cycloidal curve. The basic cycloidal curve equation for the displacement
                                      Ê q  1    2 pq  ˆ
                                   y =  hÁ  -  sin  ˜                   (2.58)
                                      Ë b  2 p   b  ¯
             From this equation it is seen that the cycloidal curve is a combination of a sine curve
          and a constant velocity line. Figure 3.12a shows the pure cycloidal curve with point A
   83   84   85   86   87   88   89   90   91   92   93