Page 107 - Carbon Nanotube Fibres and Yarns
P. 107
Carbon nanotube-reinforced polymer nanocomposite fibers 99
[34] (a) Y. Zare, Development of Halpin-Tsai model for polymer nanocomposites assuming
interphase properties and nanofiller size, Polym. Test. 51 (2016) 69–73.
(b) S. Chopra, K.A. Deshmukh, A.D. Deshmukh, C.L. Gogte, D. Peshwe, Prediction,
evaluation and mechanism governing interphase strength in tensile fractured PA-6/
MWCNT nanocomposites, Compos. Pt. A-Appl. Sci. Manuf. 112 (2018) 255–262.
[35] (a) B.A. Newcomb, P.V. Gulgunje, K. Gupta, M.G. Kamath, Y. Liu, L.A. Giannuzzi,
H.G. Chae, S. Kumar, Processing, structure, and properties of gel spun PAN and PAN/CNT
fibers and gel spun PAN based carbon fibers, Polym. Eng. Sci. 55 (11) (2015) 2603–2614.
(b) B.A. Newcomb, L.A. Giannuzzi, K.M. Lyons, P.V. Gulgunje, K. Gupta, Y. Liu, M. Kamath,
K. McDonald, J. Moon, B. Feng, High resolution transmission electron microscopy study on
polyacrylonitrile/carbon nanotube based carbon fibers and the effect of structure develop-
ment on the thermal and electrical conductivities, Carbon 93 (2015) 502–514.
[36] Y. Liu, S. Kumar, Polymer/carbon nanotube nano composite fibers—a review, ACS
Appl. Mater. Interfaces 6 (9) (2014) 6069–6087.
[37] Y.Y. Zhang, N. Tajaddod, K.A. Song, M.L. Minus, Low temperature graphitization of
interphase polyacrylonitrile (PAN), Carbon 91 (2015) 479–493.
[38] J. Brent, P.K.P. Carey, L. Ci, G.G. Silva, P.M. Ajayan, Observation of dynamic strain
hardening in polymer nanocomposites, ACS Nano 5 (4) (2011) 2715–2722.
[39] P.S. Owuor, C.S. Tiwary, R. Koizumi, M. Soto, A.C. Hart, E.V. Barrera, R. Vajtai,
J. Lou, P.M. Ajayan, Self-stiffening behavior of reinforced carbon nanotubes spheres,
Adv. Eng. Mater. 19 (5) (2017) 1600756.
[40] E. Senses, P. Akcora, An interface-driven stiffening mechanism in polymer nanocom-
posites, Macromolecules 46 (5) (2013) 1868–1874.
[41] L. Cao, Y. Wang, P. Dong, S. Vinod, J.T. Tijerina, P.M. Ajayan, Z. Xu, J. Lou, Interphase
induced dynamic self-stiffening in graphene-based polydimethylsiloxane nanocompos-
ites, Small 12 (27) (2016) 3723–3731.
[42] Y. Li, P. Zhou, F. An, Y. Liu, C. Lu, Dynamic self-stiffening and structural evolutions of
polyacrylonitrile/carbon nanotube nanocomposites, ACS Appl. Mater. Interfaces 9 (6)
(2017) 5653–5659.
[43] T.V. Sreekumar, T. Liu, B.G. Min, H. Guo, S. Kumar, R.H. Hauge, R.E. Smalley, Polyacry-
lonitrile single-walled carbon nanotube composite fibers, Adv. Mater. 16 (1) (2004) 58–61.
[44] (a) N. Minoo, et al., Electrospun single-walled carbon nanotube/polyvinyl alcohol
composite nanofibers: structure–property relationships, Nanotechnology 19 (30)
(2008) 305702.
(b) X. Zhang, T. Liu, T.V. Sreekumar, S. Kumar, X. Hu, K. Smith, Gel spinning of PVA/
SWNT composite fiber, Polymer 45 (26) (2004) 8801–8807.
[45] K.W. Putz, C.A. Mitchell, R. Krishnamoorti, P.F. Green, Elastic modulus of
single-walled carbon nanotube/poly(methyl methacrylate) nanocomposites, J. Polym.
Sci. B Polym. Phys. 42 (12) (2004) 2286–2293.
[46] J.-T. Yeh, Y.-C. Lai, H. Liu, Y.-C. Shu, C.-Y. Huang, K.-S. Huang, K.-N. Chen, Ultrad-
rawing properties of ultrahigh-molecular-weight polyethylene/carbon nanotube fibers
prepared at various formation temperatures, Polym. Int. 60 (1) (2011) 59–68.
[47] R. Jain, Y.H. Choi, Y. Liu, M.L. Minus, H.G. Chae, S. Kumar, J.-B. Baek, Processing,
structure and properties of poly(ether ketone) grafted few wall carbon nanotube com-
posite fibers, Polymer 51 (17) (2010) 3940–3947.
[48] H. Ma, J. Zeng, M.L. Realff, S. Kumar, D.A. Schiraldi, Processing, structure, and prop-
erties of fibers from polyester/carbon nanofiber composites, Compos. Sci. Technol.
63 (11) (2003) 1617–1628.
[49] R. Jain, M.L. Minus, H.G. Chae, S. Kumar, Processing, structure, and properties of
PAN/MWNT composite fibers, Macromol. Mater. Eng. 295 (8) (2010) 742–749.
[50] V. Mottaghitalab, G.M. Spinks, G.G. Wallace, The influence of carbon nanotubes on me-
chanical and electrical properties of polyaniline fibers, Synth. Met. 152 (1–3) (2005) 77–80.