Page 106 - Carbon Nanotube Fibres and Yarns
P. 106
98 Carbon Nanotube Fibers and Yarns
[19] S. Zhang, W. Lin, C.-P. Wong, D.G. Bucknall, S. Kumar, Nanocomposites of carbon
nanotube fibers prepared by polymer crystallization, ACS Appl. Mater. Interfaces 2 (6)
(2010) 1642–1647.
[20] (a) S. Zhang, M.L. Minus, L. Zhu, C.-P. Wong, S. Kumar, Polymer transcrystallinity
induced by carbon nanotubes, Polymer 49 (5) (2008) 1356–1364.
(b) J.P. Abdou, K.J. Reynolds, M.R. Pfau, J. van Staden, G.A. Braggin, N. Tajaddod,
M. Minus, V. Reguero, J.J. Vilatela, S.J. Zhang, Interfacial crystallization of isotactic
polypropylene surrounding macroscopic carbon nanotube and graphene fibers, Poly-
mer 91 (2016) 136–145.
[21] W. Ding, A. Eitan, F.T. Fisher, X. Chen, D.A. Dikin, R. Andrews, L.C. Brin-
son, L.S. Schadler, R.S. Ruoff, Direct observation of polymer sheathing in carbon
nanotube−polycarbonate composites, Nano Lett. 3 (11) (2003) 1593–1597.
[22] S. Zhang, S. Kumar, Shaping polymer particles by carbon nanotubes, Macromol. Rapid
Commun. 29 (7) (2008) 557–561.
[23] M.L. Minus, H.G. Chae, S. Kumar, Single wall carbon nanotube templated oriented
crystallization of poly(vinyl alcohol), Polymer 47 (11) (2006) 3705–3710.
[24] K.A. Anand, U.S. Agarwal, R. Joseph, Carbon nanotubes induced crystallization of
poly(ethylene terephthalate), Polymer 47 (11) (2006) 3976–3980.
[25] (a) H.G. Chae, T.V. Sreekumar, T. Uchida, S. Kumar, A comparison of reinforcement
efficiency of various types of carbon nanotubes in polyacrylonitrile fiber, Polymer 46
(24) (2005) 10925–10935.
(b) Y. Liu, H.G. Chae, S. Kumar, Gel-spun carbon nanotubes/polyacrylonitrile composite
fibers. Part I: effect of carbon nanotubes on stabilization, Carbon 49 (13) (2011) 4466–4476.
[26] J.N. Coleman, M. Cadek, R. Blake, V. Nicolosi, K.P. Ryan, C. Belton, A. Fonseca,
J.B. Nagy, Y.K. Gun’ko, W.J. Blau, High performance nanotube-reinforced plastics: under-
standing the mechanism of strength increase, Adv. Funct. Mater. 14 (8) (2004) 791–798.
[27] H.G. Chae, M.L. Minus, S. Kumar, Oriented and exfoliated single wall carbon nano-
tubes in polyacrylonitrile, Polymer 47 (10) (2006) 3494–3504.
[28] H.G. Chae, Y.H. Choi, M.L. Minus, S. Kumar, Carbon nanotube reinforced small di-
ameter polyacrylonitrile based carbon fiber, Compos. Sci. Technol. 69 (3–4) (2009)
406–413.
[29] Y. Li, Y. Yu, Y. Liu, C. Lu, Interphase development in polyacrylonitrile/SWNT nano-
composite and its effect on cyclization and carbonization for tuning carbon structures,
ACS Appl. Nano Mater. 1 (7), (2018), 3105–3113.
[30] M.L. Minus, H.G. Chae, S. Kumar, Interfacial crystallization in gel-spun poly(vinyl
alcohol)/single-wall carbon nanotube composite fibers, Macromol. Chem. Phys. 210
(21) (2009) 1799–1808.
[31] A.H. Barber, S.R. Cohen, H.D. Wagner, Measurement of carbon nanotube—polymer
interfacial strength, Appl. Phys. Lett. 82 (23) (2003) 4140–4142.
[32] L.M. Ericson, H. Fan, H. Peng, V.A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Book-
er, J. Vavro, C. Guthy, A.N.G. Parra-Vasquez, M.J. Kim, S. Ramesh, R.K. Saini,
C. Kittrell, G. Lavin, H. Schmidt, W.W. Adams, W.E. Billups, M. Pasquali, W.-F. Hwang,
R.H. Hauge, J.E. Fischer, R.E. Smalley, N. Macroscopic, Single-walled carbon nano-
tube fibers, Science 305 (5689) (2004) 1447–1450.
[33] (a) K. Livanov, L. Yang, A. Nissenbaum, H.D. Wagner, Interphase tuning for stronger
and tougher composites, Sci. Rep. 6 (2016) 26305.
(b) Y. Zhang, K. Song, J. Meng, M.L. Minus, Tailoring polyacrylonitrile interfacial
morphological structure by crystallization in the presence of single-wall carbon nano-
tubes, ACS Appl. Mater. Interfaces 5 (3) (2013) 807–814.
(c) H.G. Chae, M.L. Minus, A. Rasheed, S. Kumar, Stabilization and carbonization of
gel spun polyacrylonitrile/single wall carbon nanotube composite fibers, Polymer 48
(13) (2007) 3781–3789.