Page 104 - Carbon Nanotube Fibres and Yarns
P. 104
96 Carbon Nanotube Fibers and Yarns
Besides the above key factors in first-generation nanocomposite fi-
bers, the development of the next-generation nanocomposite fibers will
focus on the developments of highly crystallized and oriented interphase
polymer structures. There are still some uncertainties in the developments
of nanocomposite interphase, including (1) how nanocomposite solution
preparation and fiber processing methods affect the formation of interphase
structures; (2) how the curvature and chirality of CNTs affect the inter-
phase structures; (3) how the CNT surface chemical structures affect the
interphase structures and properties; and (4) how the interphase structure
develops under external stimulations. A good understanding of the inter-
phase formation, microstructures, and properties are required for the devel-
opment of the next-generation nanocomposite fibers.
References
[1] H.G. Chae, S. Kumar, Making strong fibers, Science 319 (5865) (2008) 908–909.
[2] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (6348) (1991) 56–58.
[3] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grig-
orieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306
(5696) (2004) 666.
[4] O. Breuer, U. Sundararaj, Big returns from small fibers: a review of polymer/carbon
nanotube composites, Polym. Compos. 25 (6) (2004) 630–645.
[5] (a) Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Carbon nanotube-polymer compos-
ites: chemistry, processing, mechanical and electrical properties, Prog. Polym. Sci. 35 (3)
(2010) 357–401. (b) E.T. Thostenson, Z. Ren, T.-W. Chou, Advances in the science and
technology of carbon nanotubes and their composites: a review, Compos. Sci. Technol. 61
(13) (2001) 1899–1912. (c) M. Moniruzzaman, K.I. Winey, Polymer nanocomposites
containing carbon nanotubes, Macromolecules 39 (16) (2006) 5194–5205.
(d) J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’ko, Small but strong: a review of the
mechanical properties of carbon nanotube-polymer composites, Carbon 44 (9) (2006)
1624–1652.(e)M.R. Loos, K. Schulte, Is it worth the effort to reinforce polymers with
carbon nanotubes? Macromol. Theory Simul. 20 (5) (2011) 350–362.
[6] (a) P.M. Ajayan, Nanotubes from carbon, Chem. Rev. 99 (7) (1999) 1787–1800.
(b) R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes—the route
toward applications, Science 297 (5582) (2002) 787–792.
[7] (a) R. Jain, Carbon nanotube reinforced polyacrylonitrile and poly(etherketone) fibers,
PhD Thesis, Georgia Institute of Technology, United States—Georgia, 2009.
(b) X. Gao, S. Zhang, F. Mai, L. Lin, Y. Deng, H. Deng, Q. Fu, Preparation of high
performance conductive polymer fibres from double percolated structure, J. Mater.
Chem., 21 (17) (2011) 6401–6408.
(c)A. Soroudi, M. Skrifvars, Melt blending of carbon nanotubes/polyaniline/poly-
propylene compounds and their melt spinning to conductive fibres, Synth. Met. 160
(11−12) (2010) 1143–1147.
(d)K. Liu, Y. Sun, X. Lin, R. Zhou, J. Wang, S. Fan, K. Jiang, Scratch-resistant, highly
conductive, and high-strength carbon nanotube-based composite yarns, ACS Nano 4
(10) (2010) 5827–5834.