Page 104 - Carbon Nanotube Fibres and Yarns
P. 104

96    Carbon Nanotube Fibers and Yarns


             Besides the above key factors in first-generation nanocomposite fi-
          bers, the development of the next-generation nanocomposite fibers will
          focus on the developments of highly crystallized and oriented interphase
          polymer structures. There are still some uncertainties in the developments
          of nanocomposite interphase, including (1) how nanocomposite solution
          preparation and fiber processing methods affect the formation of interphase
          structures; (2) how the curvature and chirality of CNTs affect the inter-
          phase structures; (3) how the CNT surface chemical structures affect the
          interphase structures and properties; and (4) how the interphase structure
          develops under external stimulations. A good understanding of the inter-
          phase formation, microstructures, and properties are required for the devel-
          opment of the next-generation nanocomposite fibers.


          References

            [1]  H.G. Chae, S. Kumar, Making strong fibers, Science 319 (5865) (2008) 908–909.
            [2]  S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (6348) (1991) 56–58.
            [3]  K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grig-
              orieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306
              (5696) (2004) 666.
            [4]  O. Breuer, U. Sundararaj, Big returns from small fibers: a review of polymer/carbon
              nanotube composites, Polym. Compos. 25 (6) (2004) 630–645.
            [5]  (a) Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Carbon nanotube-polymer compos-
              ites: chemistry, processing, mechanical and electrical properties, Prog. Polym. Sci. 35 (3)
              (2010) 357–401.  (b) E.T. Thostenson, Z. Ren, T.-W. Chou, Advances in the  science and
              technology of carbon nanotubes and their composites: a review, Compos. Sci.  Technol. 61
              (13) (2001) 1899–1912.  (c) M. Moniruzzaman, K.I. Winey, Polymer  nanocomposites
              containing  carbon  nanotubes,  Macromolecules  39  (16)  (2006)  5194–5205.
              (d) J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’ko, Small but strong: a review of the
              mechanical properties of carbon nanotube-polymer composites, Carbon 44 (9) (2006)
              1624–1652.(e)M.R. Loos, K. Schulte, Is it worth the effort to reinforce polymers with
              carbon nanotubes? Macromol. Theory Simul. 20 (5) (2011) 350–362.
            [6]  (a) P.M. Ajayan, Nanotubes from carbon, Chem. Rev. 99 (7) (1999) 1787–1800.
              (b) R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes—the route
              toward applications, Science 297 (5582) (2002) 787–792.
            [7]  (a) R. Jain, Carbon nanotube reinforced polyacrylonitrile and poly(etherketone) fibers,
              PhD Thesis, Georgia Institute of Technology, United States—Georgia, 2009.
              (b) X. Gao, S. Zhang, F. Mai, L. Lin, Y. Deng, H. Deng, Q. Fu, Preparation of high
                performance conductive polymer fibres from double percolated structure, J. Mater.
              Chem., 21 (17) (2011) 6401–6408.
              (c)A.  Soroudi, M.  Skrifvars, Melt blending of carbon nanotubes/polyaniline/poly-
              propylene compounds and their melt spinning to conductive fibres, Synth. Met. 160
              (11−12) (2010) 1143–1147.
              (d)K. Liu, Y. Sun, X. Lin, R. Zhou, J. Wang, S. Fan, K. Jiang, Scratch-resistant, highly
              conductive, and high-strength carbon nanotube-based composite yarns, ACS Nano 4
              (10) (2010) 5827–5834.
   99   100   101   102   103   104   105   106   107   108   109