Page 109 - Carbon Nanotube Fibres and Yarns
P. 109
Carbon nanotube-reinforced polymer nanocomposite fibers 101
(b) Y. Liu, H.G. Chae, S. Kumar, Gel-spun carbon nanotubes/polyacrylonitrile composite
fibers. Part III: effect of stabilization conditions on carbon fiber properties, Carbon 49
(13) (2011) 4487–4496.
[67] (a) P. Sabina, et al., Carbonization of electrospun poly(acrylonitrile) nanofibers con-
taining multiwalled carbon nanotubes observed by transmission electron microscope
with in situ heating, J. Polym. Sci. B Polym. Phys. 48 (20) (2010) 2121–2128.
(b) P. Sabina, Z. Eyal, C. Yachin, The effect of embedded carbon nanotubes on the
morphological evolution during the carbonization of poly(acrylonitrile) nanofibers,
Nanotechnology 19 (16) (2008) 165603.
[68] (a) Y. Lv, C. Peng, Chemically grafting carbon nanotubes onto carbon fibers for en-
hancing interfacial strength in carbon fiber/HDPE composites, Surf. Interface Anal.
50 (5) (2018) 552–557.
(b) H. Cui, Z. Jin, D. Zheng, W. Tang, Y. Li, Y. Yun, T.Y. Lo, F. Xing, Effect of carbon
fibers grafted with carbon nanotubes on mechanical properties of cement-based com-
posites, Constr. Build. Mater. 181 (2018) 713–720.
(c) H.S. Bedi, S.S. Padhee, P.K. Agnihotri, Effect of carbon nanotube grafting on
the wettability and average mechanical properties of carbon fiber/polymer multiscale
composites, Polym. Compos. 39 (2018) E1184–E1195.
(d) L. Zhang, N. De Greef, G. Kalinka, B. Van Bilzen, J.-P. Locquet, I. Verpoest,
J.W. Seo, Carbon nanotube-grafted carbon fiber polymer composites: damage charac-
terization on the micro-scale, Compos. B Eng. 126 (2017) 202–210.
(e) L. Feng, K.-Z. Li, J.-H. Lu, L.-H. Qi, Effect of growth temperature on carbon
nanotube grafting morphology and mechanical behavior of carbon fibers and carbon/
carbon composites, J. Mater. Sci. Technol. 33 (1) (2017) 65–70.
(f) M.S. Islam, Y. Deng, L. Tong, S.N. Faisal, A.K. Roy, A.I. Minett, V.G. Gomes, Graft-
ing carbon nanotubes directly onto carbon fibers for superior mechanical stability: to-
wards next generation aerospace composites and energy storage applications, Carbon
96 (2016) 701–710.
(g) W. Fan, Y. Wang, C. Wang, J. Chen, Q. Wang, Y. Yuan, F. Niu, High efficient prepa-
ration of carbon nanotube-grafted carbon fibers with the improved tensile strength,
Appl. Surf. Sci. 364 (2016) 539–551. .
(h) L. Feng, K.-z. Li, Z.-s. Si, Q. Song, H.-j. Li, J.-h. Lu, L.-j. Guo, Compressive and
interlaminar shear properties of carbon/carbon composite laminates reinforced with
carbon nanotube-grafted carbon fibers produced by injection chemical vapor deposi-
tion, Mater. Sci. Eng. A 626 (2015) 449–457.
(i) N. Subramanian, B. Koo, K.R. Venkatesan, A. Chattopadhyay, Interface mechanics
of carbon fibers with radially-grown carbon nanotubes, Carbon 134 (2018) 123–133.
[69] M.L. Minus, H.G. Chae, S. Kumar, Observations on solution crystallization of poly(vi-
nyl alcohol) in the presence of single-wall carbon nanotubes, Macromol. Rapid Com-
mun. 31 (3) (2010) 310–316.
[70] P. Miaudet, S. Badaire, M. Maugey, A. Derre, V. Pichot, P. Launois, P. Poulin, C. Zakri,
Hot-drawing of single and multiwall carbon nanotube fibers for high toughness and
alignment, Nano Lett. 5 (11) (2005) 2212–2215.
[71] X. Xu, A.J. Uddin, K. Aoki, Y. Gotoh, T. Saito, M. Yumura, Fabrication of high
strength PVA/SWCNT composite fibers by gel spinning, Carbon 48 (7) (2010)
1977–1984.
[72] L.L. Lu, W.J. Hou, J. Sun, J.J. Wang, C.X. Qin, L.X. Dai, Preparation of poly (vinyl
alcohol) fibers strengthened using multiwalled carbon nanotubes functionalized with
tea polyphenols, J. Mater. Sci. 49 (9) (2014) 3322–3330.
[73] Y.Z. Wei, D.P. Lai, L.M. Zou, X.L. Ling, H.W. Lu, Y.J. Xu, Facile fabrication of PVA
composite fibers with high fraction of multiwalled carbon nanotubes by gel spinning,
Polym. Eng. Sci. 58 (1) (2018) 37–45.
[74] J.S. Meng, Y.Y. Zhang, K.N. Song, M.L. Minus, Forming crystalline polymer-nano
interphase structures for high-modulus and high-tensile/strength composite fibers,
Macromol. Mater. Eng. 299 (2) (2014) 144–153.