Page 109 - Carbon Nanotube Fibres and Yarns
P. 109

Carbon nanotube-reinforced polymer nanocomposite fibers   101


                 (b) Y. Liu, H.G. Chae, S. Kumar, Gel-spun carbon nanotubes/polyacrylonitrile composite
                 fibers. Part III: effect of stabilization conditions on carbon fiber properties, Carbon 49
                 (13) (2011) 4487–4496.
                [67]  (a) P. Sabina, et al., Carbonization of electrospun poly(acrylonitrile) nanofibers con-
                 taining multiwalled carbon nanotubes observed by transmission electron microscope
                 with in situ heating, J. Polym. Sci. B Polym. Phys. 48 (20) (2010) 2121–2128.
                 (b) P. Sabina, Z. Eyal, C. Yachin, The effect of embedded carbon nanotubes on the
                 morphological evolution during the carbonization of poly(acrylonitrile) nanofibers,
                 Nanotechnology 19 (16) (2008) 165603.
                [68]  (a) Y. Lv, C. Peng, Chemically grafting carbon nanotubes onto carbon fibers for en-
                 hancing interfacial strength in carbon fiber/HDPE composites, Surf. Interface Anal.
                 50 (5) (2018) 552–557.
                 (b) H. Cui, Z. Jin, D. Zheng, W. Tang, Y. Li, Y. Yun, T.Y. Lo, F. Xing, Effect of carbon
                 fibers grafted with carbon nanotubes on mechanical properties of cement-based com-
                 posites, Constr. Build. Mater. 181 (2018) 713–720.
                 (c) H.S. Bedi, S.S. Padhee, P.K. Agnihotri, Effect of carbon nanotube grafting on
                 the wettability and average mechanical properties of carbon fiber/polymer multiscale
                 composites, Polym. Compos. 39 (2018) E1184–E1195.
                 (d) L. Zhang, N. De Greef, G. Kalinka, B. Van Bilzen, J.-P. Locquet, I. Verpoest,
                 J.W. Seo, Carbon nanotube-grafted carbon fiber polymer composites: damage charac-
                 terization on the micro-scale, Compos. B Eng. 126 (2017) 202–210.
                 (e) L. Feng, K.-Z. Li, J.-H. Lu, L.-H. Qi, Effect of growth temperature on carbon
                 nanotube grafting morphology and mechanical behavior of carbon fibers and carbon/
                 carbon composites, J. Mater. Sci. Technol. 33 (1) (2017) 65–70.
                 (f) M.S. Islam, Y. Deng, L. Tong, S.N. Faisal, A.K. Roy, A.I. Minett, V.G. Gomes, Graft-
                 ing carbon nanotubes directly onto carbon fibers for superior mechanical stability: to-
                 wards next generation aerospace composites and energy storage applications, Carbon
                 96 (2016) 701–710.
                 (g) W. Fan, Y. Wang, C. Wang, J. Chen, Q. Wang, Y. Yuan, F. Niu, High efficient prepa-
                 ration of carbon nanotube-grafted carbon fibers with the improved tensile strength,
                 Appl. Surf. Sci. 364 (2016) 539–551. .
                 (h) L. Feng, K.-z. Li, Z.-s. Si, Q. Song, H.-j. Li, J.-h. Lu, L.-j. Guo, Compressive and
                 interlaminar shear properties of carbon/carbon composite laminates reinforced with
                 carbon  nanotube-grafted carbon fibers produced by injection chemical vapor deposi-
                 tion, Mater. Sci. Eng. A 626 (2015) 449–457.
                 (i) N. Subramanian, B. Koo, K.R. Venkatesan, A. Chattopadhyay, Interface mechanics
                 of carbon fibers with radially-grown carbon nanotubes, Carbon 134 (2018) 123–133.
                [69]  M.L. Minus, H.G. Chae, S. Kumar, Observations on solution crystallization of poly(vi-
                 nyl alcohol) in the presence of single-wall carbon nanotubes, Macromol. Rapid Com-
                 mun. 31 (3) (2010) 310–316.
                [70]  P. Miaudet, S. Badaire, M. Maugey, A. Derre, V. Pichot, P. Launois, P. Poulin, C. Zakri,
                 Hot-drawing of single and multiwall carbon nanotube fibers for high toughness and
                 alignment, Nano Lett. 5 (11) (2005) 2212–2215.
                [71]  X. Xu, A.J. Uddin, K. Aoki, Y. Gotoh, T. Saito, M. Yumura, Fabrication of high
                 strength PVA/SWCNT composite fibers by gel spinning, Carbon 48 (7) (2010)
                 1977–1984.
                [72]  L.L. Lu, W.J. Hou, J. Sun, J.J. Wang, C.X. Qin, L.X. Dai, Preparation of poly (vinyl
                 alcohol) fibers strengthened using multiwalled carbon nanotubes functionalized with
                 tea polyphenols, J. Mater. Sci. 49 (9) (2014) 3322–3330.
                [73]  Y.Z. Wei, D.P. Lai, L.M. Zou, X.L. Ling, H.W. Lu, Y.J. Xu, Facile fabrication of PVA
                 composite fibers with high fraction of multiwalled carbon nanotubes by gel spinning,
                 Polym. Eng. Sci. 58 (1) (2018) 37–45.
                [74]  J.S. Meng, Y.Y. Zhang, K.N. Song, M.L. Minus, Forming crystalline polymer-nano
                 interphase structures for high-modulus and high-tensile/strength composite fibers,
                 Macromol. Mater. Eng. 299 (2) (2014) 144–153.
   104   105   106   107   108   109   110   111   112   113   114