Page 108 - Carbon Nanotube Fibres and Yarns
P. 108
100 Carbon Nanotube Fibers and Yarns
[51] F. Du, J.E. Fischer, K.I. Winey, Coagulation method for preparing single-walled carbon
nanotube/poly(methyl methacrylate) composites and their modulus, electrical con-
ductivity, and thermal stability, J. Polym. Sci. B Polym. Phys. 41 (24) (2003) 3333–3338.
[52] J. Wang, M. Miao, Z. Wang, W. Humphries, Q. Gu, A method of mobilizing and align-
ing carbon nanotubes and its use in gel spinning of composite fibres, Carbon 57 (2013)
217–226.
[53] E. Choi, Enhancement of thermal and electrical properties of carbon nanotube poly-
mer composites by magnetic field processing, J. Appl. Phys. 94 (9) (2003) 6034.
[54] F. Du, J.E. Fischer, K.I. Winey, Effect of nanotube alignment on percolation conduc-
tivity in carbon nanotube/polymer composites, Phys. Rev. B 72 (12) (2005) 121404.
[55] P. Pötschke, H. Brünig, A. Janke, D. Fischer, D. Jehnichen, Orientation of multiwalled
carbon nanotubes in composites with polycarbonate by melt spinning, Polymer 46 (23)
(2005) 10355–10363.
[56] (a) Y. Bin, M. Mine, A. Koganemaru, X. Jiang, M. Matsuo, Morphology and mechan-
ical and electrical properties of oriented PVA–VGCF and PVA–MWNT composites,
Polymer 47 (4) (2006) 1308–1317.
(b) S. Hooshmand, A. Soroudi, M. Skrifvars, Electro-conductive composite fibers by
melt spinning of polypropylene/polyamide/carbon nanotubes, Synth. Met. 161 (15–
16) (2011) 1731–1737.
[57] Y. Mamunya, A. Boudenne, N. Lebovka, L. Ibos, Y. Candau, M. Lisunova, Electri-
cal and thermophysical behaviour of PVC-MWCNT nanocomposites, Compos. Sci.
Technol. 68 (9) (2008) 1981–1988.
[58] (a) A.N. Mallya, P.C. Ramamurthy, Design and fabrication of a highly stable polymer
carbon nanotube nanocomposite chemiresistive sensor for nitrate ion detection in wa-
ter, ECS J. Solid State Sci. Technol. 7, (7) (2018) Q3054–Q3064.
(b) N. Hu, Y. Karube, H. Fukunaga, A Strain Sensor from a Polymer/Carbon Nanotube
Nanocomposite, vol. 19, 2010, pp. 77–86.
(c)B. Pradhan, K. Setyowati, H. Liu, D.H. Waldeck, J. Chen, Carbon nanotube—pol-
ymer nanocomposite infrared sensor, Nano Lett., 8 (4) (2008) 1142–1146. (d)N. Hu,
Y. Karube, C. Yan, Z. Masuda, H. Fukunaga, Tunneling effect in a polymer/carbon
nanotube nanocomposite strain sensor, Acta Mater. 56 (13) (2008) 2929–2936.
[59] S. Berber, Y.-K. Kwon, D. Tománek, Unusually high thermal conductivity of carbon
nanotubes, Phys. Rev. Lett. 84 (20) (2000) 4613.
[60] P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Thermal transport measurements of indi-
vidual multiwalled nanotubes, Phys. Rev. Lett. 87 (21) (2001) 215502.
[61] Z. Han, A. Fina, Thermal conductivity of carbon nanotubes and their polymer nano-
composites: a review, Prog. Polym. Sci. 36 (7) (2011) 914–944.
[62] (a) W. Li, J. Hao, P. Zhou, Y. Liu, C. Lu, Z. Zhang, Solvent-solubility-parameter-
dependent homogeneity and sol–gel transitions of concentrated polyacrylonitrile solu-
tions, J. Appl. Polym. Sci. 134 (41) (2017).
(b) J. Hao, F. An, Y. Yu, P. Zhou, Y. Liu, C. Lu, Effect of coagulation conditions on
solvent diffusions and the structures and tensile properties of solution spun polyacry-
lonitrile fibers, J. Appl. Polym. Sci. 134 (5) (2017) 44390.
[63] H.G. Chae, B.A. Newcomb, P.V. Gulgunje, Y. Liu, K.K. Gupta, M.G. Kamath, K.M. Ly-
ons, S. Ghoshal, C. Pramanik, L. Giannuzzi, High strength and high modulus carbon
fibers, Carbon 93 (2015) 81–87.
[64] J. Lee, J.I. Choi, A.E. Cho, S. Kumar, S.S. Jang, Y.H. Kim, Origin and control of poly-
acrylonitrile alignments on carbon nanotubes and graphene nanoribbons, Adv. Funct.
Mater. (15) (2018) 28.
[65] Y. Liu, H.G. Chae, S. Kumar, Gel-spun carbon nanotubes/polyacrylonitrile composite
fibers. Part II: stabilization reaction kinetics and effect of gas environment, Carbon 49
(13) (2011) 4477–4486.
[66] (a) N. Tajaddod, H. Li, M.L. Minus, Low-temperature graphitic formation promoted by
confined interphase structures in polyacrylonitrile/carbon nanotube materials, Polymer
137 (2018) 346–357.