Page 108 - Carbon Nanotube Fibres and Yarns
P. 108

100   Carbon Nanotube Fibers and Yarns


            [51]  F. Du, J.E. Fischer, K.I. Winey, Coagulation method for preparing single-walled carbon
              nanotube/poly(methyl methacrylate) composites and their modulus, electrical con-
              ductivity, and thermal stability, J. Polym. Sci. B Polym. Phys. 41 (24) (2003) 3333–3338.
            [52]  J. Wang, M. Miao, Z. Wang, W. Humphries, Q. Gu, A method of mobilizing and align-
              ing carbon nanotubes and its use in gel spinning of composite fibres, Carbon 57 (2013)
              217–226.
            [53]  E. Choi, Enhancement of thermal and electrical properties of carbon nanotube poly-
              mer composites by magnetic field processing, J. Appl. Phys. 94 (9) (2003) 6034.
            [54]  F. Du, J.E. Fischer, K.I. Winey, Effect of nanotube alignment on percolation conduc-
              tivity in carbon nanotube/polymer composites, Phys. Rev. B 72 (12) (2005) 121404.
            [55]  P. Pötschke, H. Brünig, A. Janke, D. Fischer, D. Jehnichen, Orientation of multiwalled
              carbon nanotubes in composites with polycarbonate by melt spinning, Polymer 46 (23)
              (2005) 10355–10363.
            [56]  (a) Y. Bin, M. Mine, A. Koganemaru, X. Jiang, M. Matsuo, Morphology and mechan-
              ical and electrical properties of oriented PVA–VGCF and PVA–MWNT composites,
              Polymer 47 (4) (2006) 1308–1317.
              (b) S. Hooshmand, A. Soroudi, M. Skrifvars,  Electro-conductive composite fibers by
              melt spinning of polypropylene/polyamide/carbon nanotubes, Synth. Met. 161 (15–
              16) (2011) 1731–1737.
            [57]  Y. Mamunya, A. Boudenne, N. Lebovka, L. Ibos, Y. Candau, M. Lisunova, Electri-
              cal and thermophysical behaviour of PVC-MWCNT nanocomposites, Compos. Sci.
              Technol. 68 (9) (2008) 1981–1988.
            [58]  (a) A.N. Mallya, P.C. Ramamurthy, Design and fabrication of a highly stable polymer
              carbon nanotube nanocomposite chemiresistive sensor for nitrate ion detection in wa-
              ter, ECS J. Solid State Sci. Technol. 7, (7) (2018) Q3054–Q3064.
              (b) N. Hu, Y. Karube, H. Fukunaga, A Strain Sensor from a Polymer/Carbon Nanotube
              Nanocomposite, vol. 19, 2010, pp. 77–86.
              (c)B. Pradhan, K. Setyowati, H. Liu, D.H. Waldeck, J. Chen, Carbon nanotube—pol-
              ymer nanocomposite infrared sensor, Nano Lett., 8 (4) (2008) 1142–1146. (d)N. Hu,
              Y. Karube, C. Yan, Z. Masuda, H. Fukunaga, Tunneling effect in a polymer/carbon
              nanotube nanocomposite strain sensor, Acta Mater. 56 (13) (2008) 2929–2936.
            [59]  S. Berber, Y.-K. Kwon, D. Tománek, Unusually high thermal conductivity of carbon
              nanotubes, Phys. Rev. Lett. 84 (20) (2000) 4613.
            [60]  P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Thermal transport measurements of indi-
              vidual multiwalled nanotubes, Phys. Rev. Lett. 87 (21) (2001) 215502.
            [61]  Z. Han, A. Fina, Thermal conductivity of carbon nanotubes and their polymer nano-
              composites: a review, Prog. Polym. Sci. 36 (7) (2011) 914–944.
            [62]  (a) W.  Li, J.  Hao, P.  Zhou, Y.  Liu, C.  Lu, Z.  Zhang, Solvent-solubility-parameter-
              dependent homogeneity and sol–gel transitions of concentrated polyacrylonitrile solu-
              tions, J. Appl. Polym. Sci. 134 (41) (2017).
              (b) J. Hao, F. An, Y. Yu, P. Zhou, Y. Liu, C. Lu, Effect of coagulation conditions on
              solvent diffusions and the structures and tensile properties of solution spun polyacry-
              lonitrile fibers, J. Appl. Polym. Sci. 134 (5) (2017) 44390.
            [63]  H.G. Chae, B.A. Newcomb, P.V. Gulgunje, Y. Liu, K.K. Gupta, M.G. Kamath, K.M. Ly-
              ons, S. Ghoshal, C. Pramanik, L. Giannuzzi, High strength and high modulus carbon
              fibers, Carbon 93 (2015) 81–87.
            [64]  J. Lee, J.I. Choi, A.E. Cho, S. Kumar, S.S. Jang, Y.H. Kim, Origin and control of poly-
              acrylonitrile alignments on carbon nanotubes and graphene nanoribbons, Adv. Funct.
              Mater. (15) (2018) 28.
            [65]  Y. Liu, H.G. Chae, S. Kumar, Gel-spun carbon nanotubes/polyacrylonitrile composite
              fibers. Part II: stabilization reaction kinetics and effect of gas environment, Carbon 49
              (13) (2011) 4477–4486.
           [66]  (a) N. Tajaddod, H. Li, M.L. Minus, Low-temperature graphitic formation promoted by
              confined interphase structures in polyacrylonitrile/carbon nanotube materials, Polymer
              137 (2018) 346–357.
   103   104   105   106   107   108   109   110   111   112   113