Page 141 - Carbon Nanotube Fibres and Yarns
P. 141

Post-spinning treatments to carbon nanotube fibers    133


                [39]  H. Khoshnevis, S.M. Mint, E. Yedinak, T.Q. Tran, A. Zadhoush, M. Youssefi, et al.,
                 Super high-rate fabrication of high-purity carbon nanotube aerogels from floating
                 catalyst method for oil spill cleaning, Chem. Phys. Lett. 693 (2018) 146–151.
                [40]  T.Q. Tran, R.J. Headrick, E.A. Bengio, S. Myo Myint, H. Khoshnevis, V. Jamali, et al.,
                 Purification and dissolution of carbon nanotube fibers spun from the floating catalyst
                 method, ACS Appl. Mater. Interfaces 9 (2017) 37112–37119.
                [41]  H. Cheng, K.L.P. Koh, P. Liu, T.Q. Thang, H.M. Duong, Continuous self-assembly of
                 carbon nanotube thin films and their composites for supercapacitors, Colloids Surf. A
                 Physicochem. Eng. Asp. 481 (2015) 626–632.
                [42]  P.X. Hou, C. Liu, H.M. Cheng, Purification of carbon nanotubes, Carbon 46 (2008)
                 2003–2025.
                [43]  Y. Lin, J.W. Kim, J.W. Connell, M. Lebrõn-Colõn, E.J. Siochi, Purification of carbon
                 nanotube sheets, Adv. Eng. Mater. 17 (2015) 674–688.
                [44]  V.A. Davis, A.N.G. Parra-Vasquez, M.J. Green, P.K. Rai, N. Behabtu, V. Prieto, et al.,
                 True solutions of single-walled carbon nanotubes for assembly into macroscopic mate-
                 rials, Nat. Nanotechnol. 4 (2009) 830–834.
                [45]  F.  Mirri, A.W.K.  Ma, T.T.  Hsu, N.  Behabtu, S.L.  Eichmann, C.C.  Young, et  al.,
                 High-performance carbon nanotube transparent conductive films by scalable dip coat-
                 ing, ACS Nano 6 (2012) 9737–9744.
                [46]  S. Osswald, Y. Gogotsi, In situ Raman spectroscopy of oxidation of carbon nanomate-
                 rials, in: Challa S.S.R. Kumar (Ed.), Raman Spectroscopy for Nanomaterials Charac-
                 terization, Springer Nature, Berlin, 2012, pp. 291–351.
                [47]  D.E. Tsentalovich, A.W.K. Ma, J.A. Lee, N. Behabtu, E.A. Bengio, A. Choi, et al., Re-
                 lationship of extensional viscosity and liquid crystalline transition to length distribution
                 in carbon nanotube solutions, Macromolecules 49 (2016) 681–689.
                [48]  P.W. Oakes, J. Viamontes, J.X. Tang, Growth of tactoidal droplets during the first- order
                 isotropic to nematic phase transition of F-actin, Phys. Rev. E Stat. Nonlinear Soft Mat-
                 ter Phys. 75 (2007) 061902.
                [49]  M.S. Motta, A. Moisala, I.A. Kinloch, A.H. Windle, The role of sulphur in the synthesis
                 of carbon nanotubes by chemical vapour deposition at high temperatures, J. Nanosci.
                 Nanotechnol. 8 (2008) 2442–2449.
               [50]  F. Meng, J. Zhao, Y. Ye, X. Zhang, Q. Li, Carbon nanotube fibers for electrochemical appli-
                 cations: effect of enhanced interfaces by an acid treatment, Nanoscale 4 (2012) 7464–7468.
                [51]  S. Li, Y. Shang, W. Zhao, Y. Wang, X. Li, A. Cao, Efficient purification of single-walled
                 carbon nanotube fibers by instantaneous current injection and acid washing, RSC Adv.
                 6 (2016) 97865–97872.
                [52]  K. Wang, M. Li, Y.N. Liu, Y. Gu, Q. Li, Z. Zhang, Effect of acidification conditions on
                 the properties of carbon nanotube fibers, Appl. Surf. Sci. 292 (2014) 469–474.
                [53]  L. Shao, G. Tobias, C.G. Salzmann, B. Ballesteros, S.Y. Hong, A. Crossley, et al., Re-
                 moval of amorphous carbon for the efficient sidewall functionalisation of single-walled
                 carbon nanotubes, Chem. Commun. (2007) 5090–5092.
                [54]  L. Stobinski, B. Lesiak, L. Kövér, J. Tóth, S. Biniak, G. Trykowski, et al., Multiwall
                 carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and
                 electron spectroscopy methods, J. Alloys Compd. 501 (2010) 77–84.
                [55]  Y. Wang, G. Colas, T. Filleter, Improvements in the mechanical properties of carbon
                 nanotube fibers through graphene oxide interlocking, Carbon 98 (2016) 291–299.
               [56]  S. Li, X. Zhang, J. Zhao, F. Meng, G. Xu, Z. Yong, et al., Enhancement of carbon nanotube
                 fibres using different solvents and polymers, Compos. Sci. Technol. 72 (2012) 1402–1407.
                [57]  P. Liu, A.L. Cottrill, D. Kozawa, V.B. Koman, D. Parviz, A.T. Liu, et al., Emerging trends
                 in 2D nanotechnology that are redefining our understanding of “nanocomposites”,
                 Nano Today 21 (2018) 18–40.
                [58]  J.Y. Cai, J. Min, M. Miao, J.S. Church, J. McDonnell, R. Knott, et al., Enhanced me-
                 chanical performance of CNT/polymer composite yarns by  γ-irradiation, Fibers
                 Polym. 15 (2014) 322–325.
   136   137   138   139   140   141   142   143   144   145   146