Page 139 - Carbon Nanotube Fibres and Yarns
P. 139

Post-spinning treatments to carbon nanotube fibers    131


              applications, such as structural materials for automotive and aerospace ap-
              plications [76], electrical and thermal conductors for energy applications
              [33, 77],  nano-biotechnology [78], and in other disciplines [44, 79]. The
              CNT fibers with their aligned CNT structures and excellent mechanical
              and electrical properties are promising materials to fabricate high perfor-
              mance, lightweight, and multifunctional composites.


              References


                [1]  N. Behabtu, C.C. Young, D.E. Tsentalovich, O. Kleinerman, X. Wang, A.W.K. Ma, et al.,
                 Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity, Science
                 339 (2013) 182–186.
                [2]  L.M. Ericson, H. Fan, H. Peng, V.A. Davis, W. Zhou, J. Sulpizio, et al., Macroscopic, neat,
                   single-walled carbon nanotube fibers, Science 305 (2004) 1447–1450.
                [3]  S. Fang, M. Zhang, A.A. Zakhidov, R.H. Baughman, Structure and process-dependent prop-
                 erties of solid-state spun carbon nanotube yarns, J. Phys. Condens. Matter 22 (2010) 334221.
                [4]  T. Mirfakhrai, M. Kozlov, S. Fang, M. Zhang, R.H. Baughman, J.D. Madden, Carbon
                 nanotube yarns: sensors, actuators and current carriers, Proc. SPIE Int. Soc. Opt. Eng.
                 6927 (2008) 692708.
                [5]  M. Zhang, K.R. Atkinson, R.H. Baughman, Multifunctional carbon nanotube yarns
                 by downsizing an ancient technology, Science 306 (2004) 1358–1361.
                [6]  T.S. Gspann, F.R. Smail, A.H. Windle, Spinning of carbon nanotube fibres using the
                 floating catalyst high temperature route: purity issues and the critical role of sulphur,
                 Faraday Discuss. 173 (2014) 47–65.
                [7]  Y.L. Li, I.A. Kinloch, A.H. Windle, Direct spinning of carbon nanotube fibers from
                 chemical vapor deposition synthesis, Science 304 (2004) 276–278.
                [8]  R.M. Sundaram, K.K.K. Koziol, A.H. Windle, Continuous direct spinning of fibers of
                 single-walled carbon nanotubes with metallic chirality, Adv. Mater. 23 (2011) 5064–5068.
                [9]  J.J.  Vilatela, A.H.  Windle, Yarn-like carbon nanotube fibers, Adv. Mater. 22 (2010)
                 4959–4963.
                [10]  H.M. Duong, F. Gong, P. Liu, T.Q. Tran, Advanced fabrication and properties of aligned
                 carbon nanotube composites: experiments and modeling, in: R.M. Berber (Ed.), Car-
                 bon Nanotubes, InTech, 2016, pp. 47–72.
                [11]  P. Liu, T.Q. Tran, Z. Fan, H.M. Duong, Formation mechanisms and morphological ef-
                 fects on multi-properties of carbon nanotube fibers and their polyimide aerogel-coated
                 composites, Compos. Sci. Technol. 117 (2015) 114–120.
                [12]  T.Q. Tran, Z. Fan, P. Liu, H.M. Duong, Advanced morphology-controlled manufac-
                 turing of carbon nanotube fibers, thin films and aerogels from aerogel technique, in:
                 Asia Pacific Confederation of Chemical Engineering Congress 2015: APCChE 2015,
                 Incorporating CHEMECA 2015, Engineers Australia, 2015, p. 2444.
                [13]  H. Khoshnevis, T.Q. Tran, S.M. Mint, A. Zadhoush, H.M. Duong, M. Youssefi, Effect
                 of alignment and packing density on the stress relaxation process of carbon nanotube
                 fibers spun from floating catalyst chemical vapor deposition method, Colloids Surf. A
                 Physicochem. Eng. Asp. 558 (2018) 570–578.
                [14]  S. Badaire, V. Pichot, C. Zakri, P. Poulin, P. Launois, J. Vavro, et al., Correlation of prop-
                 erties with preferred orientation in coagulated and stretch-aligned single-wall carbon
                 nanotubes, J. Appl. Phys. 96 (2004) 7509–7513.
                [15]  M.B. Jakubinek, M.B. Johnson, M.A. White, C. Jayasinghe, G. Li, W. Cho, et al., Ther-
                 mal and electrical conductivity of array-spun multi-walled  carbon nanotube yarns,
                 Carbon 50 (2012) 244–248.
   134   135   136   137   138   139   140   141   142   143   144