Page 139 - Carbon Nanotube Fibres and Yarns
P. 139
Post-spinning treatments to carbon nanotube fibers 131
applications, such as structural materials for automotive and aerospace ap-
plications [76], electrical and thermal conductors for energy applications
[33, 77], nano-biotechnology [78], and in other disciplines [44, 79]. The
CNT fibers with their aligned CNT structures and excellent mechanical
and electrical properties are promising materials to fabricate high perfor-
mance, lightweight, and multifunctional composites.
References
[1] N. Behabtu, C.C. Young, D.E. Tsentalovich, O. Kleinerman, X. Wang, A.W.K. Ma, et al.,
Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity, Science
339 (2013) 182–186.
[2] L.M. Ericson, H. Fan, H. Peng, V.A. Davis, W. Zhou, J. Sulpizio, et al., Macroscopic, neat,
single-walled carbon nanotube fibers, Science 305 (2004) 1447–1450.
[3] S. Fang, M. Zhang, A.A. Zakhidov, R.H. Baughman, Structure and process-dependent prop-
erties of solid-state spun carbon nanotube yarns, J. Phys. Condens. Matter 22 (2010) 334221.
[4] T. Mirfakhrai, M. Kozlov, S. Fang, M. Zhang, R.H. Baughman, J.D. Madden, Carbon
nanotube yarns: sensors, actuators and current carriers, Proc. SPIE Int. Soc. Opt. Eng.
6927 (2008) 692708.
[5] M. Zhang, K.R. Atkinson, R.H. Baughman, Multifunctional carbon nanotube yarns
by downsizing an ancient technology, Science 306 (2004) 1358–1361.
[6] T.S. Gspann, F.R. Smail, A.H. Windle, Spinning of carbon nanotube fibres using the
floating catalyst high temperature route: purity issues and the critical role of sulphur,
Faraday Discuss. 173 (2014) 47–65.
[7] Y.L. Li, I.A. Kinloch, A.H. Windle, Direct spinning of carbon nanotube fibers from
chemical vapor deposition synthesis, Science 304 (2004) 276–278.
[8] R.M. Sundaram, K.K.K. Koziol, A.H. Windle, Continuous direct spinning of fibers of
single-walled carbon nanotubes with metallic chirality, Adv. Mater. 23 (2011) 5064–5068.
[9] J.J. Vilatela, A.H. Windle, Yarn-like carbon nanotube fibers, Adv. Mater. 22 (2010)
4959–4963.
[10] H.M. Duong, F. Gong, P. Liu, T.Q. Tran, Advanced fabrication and properties of aligned
carbon nanotube composites: experiments and modeling, in: R.M. Berber (Ed.), Car-
bon Nanotubes, InTech, 2016, pp. 47–72.
[11] P. Liu, T.Q. Tran, Z. Fan, H.M. Duong, Formation mechanisms and morphological ef-
fects on multi-properties of carbon nanotube fibers and their polyimide aerogel-coated
composites, Compos. Sci. Technol. 117 (2015) 114–120.
[12] T.Q. Tran, Z. Fan, P. Liu, H.M. Duong, Advanced morphology-controlled manufac-
turing of carbon nanotube fibers, thin films and aerogels from aerogel technique, in:
Asia Pacific Confederation of Chemical Engineering Congress 2015: APCChE 2015,
Incorporating CHEMECA 2015, Engineers Australia, 2015, p. 2444.
[13] H. Khoshnevis, T.Q. Tran, S.M. Mint, A. Zadhoush, H.M. Duong, M. Youssefi, Effect
of alignment and packing density on the stress relaxation process of carbon nanotube
fibers spun from floating catalyst chemical vapor deposition method, Colloids Surf. A
Physicochem. Eng. Asp. 558 (2018) 570–578.
[14] S. Badaire, V. Pichot, C. Zakri, P. Poulin, P. Launois, J. Vavro, et al., Correlation of prop-
erties with preferred orientation in coagulated and stretch-aligned single-wall carbon
nanotubes, J. Appl. Phys. 96 (2004) 7509–7513.
[15] M.B. Jakubinek, M.B. Johnson, M.A. White, C. Jayasinghe, G. Li, W. Cho, et al., Ther-
mal and electrical conductivity of array-spun multi-walled carbon nanotube yarns,
Carbon 50 (2012) 244–248.