Page 140 - Carbon Nanotube Fibres and Yarns
P. 140
132 Carbon Nanotube Fibers and Yarns
[16] Q. Li, Y. Li, X. Zhang, S.B. Chikkannanavar, Y. Zhao, A.M. Dangelewicz, et al.,
Structure-dependent electrical properties of carbon nanotube fibers, Adv. Mater. 19
(2007) 3358–3363.
[17] W. Lu, M. Zu, J.H. Byun, B.S. Kim, T.W. Chou, State of the art of carbon nanotube
fibers: opportunities and challenges, Adv. Mater. 24 (2012) 1805–1833.
[18] M. Miao, Electrical conductivity of pure carbon nanotube yarns, Carbon 49 (2011)
3755–3761.
[19] P. Miaudet, C. Bartholome, A. Derré, M. Maugey, G. Sigaud, C. Zakri, et al.,
Thermo-electrical properties of PVA-nanotube composite fibers, Polymer 48 (2007)
4068–4074.
[20] X. Zhang, Q. Li, Y. Tu, Y. Li, J.Y. Coulter, L. Zheng, et al., Strong carbon-nanotube
fibers spun from long carbon-nanotube arrays, Small 3 (2007) 244–248.
[21] J. Zhao, X. Zhang, J. Di, G. Xu, X. Yang, X. Liu, et al., Double-peak mechanical prop-
erties of carbon-nanotube fibers, Small 6 (2010) 2612–2617.
[22] K. Liu, Y. Sun, X. Lin, R. Zhou, J. Wang, S. Fan, et al., Scratch-resistant, highly conduc-
tive, and high-strength carbon nanotube-based composite yarns, ACS Nano 4 (2010)
5827–5834.
[23] K. Liu, Y. Sun, R. Zhou, H. Zhu, J. Wang, L. Liu, et al., Carbon nanotube yarns with
high tensile strength made by a twisting and shrinking method, Nanotechnology 21
(2010) 045708.
[24] K. Sugano, M. Kurata, H. Kawada, Evaluation of mechanical properties of untwisted car-
bon nanotube yarn for application to composite materials, Carbon 78 (2014) 356–365.
[25] M. Miao, Production, structure and properties of twistless carbon nanotube yarns with
a high density sheath, Carbon 50 (2012) 4973–4983.
[26] J.N. Wang, X.G. Luo, T. Wu, Y. Chen, High-strength carbon nanotube fibre-like rib-
bon with high ductility and high electrical conductivity, Nat. Commun. 5 (2014) 3848.
[27] S. Ryu, Y. Lee, J.W. Hwang, S. Hong, C. Kim, T.G. Park, et al., High-strength carbon
nanotube fibers fabricated by infiltration and curing of mussel-inspired catecholamine
polymer, Adv. Mater. 23 (2011) 1971–1975.
[28] T.Q. Tran, Z. Fan, P. Liu, S.M. Myint, H.M. Duong, Super-strong and highly conductive
carbon nanotube ribbons from post-treatment methods, Carbon 99 (2016) 407–415.
[29] P. Liu, Z. Fan, A. Mikhalchan, T.Q. Tran, D. Jewell, H.M. Duong, et al., Continuous
carbon nanotube-based fibers and films for applications requiring enhanced heat dissi-
pation, ACS Appl. Mater. Interfaces 8 (2016) 17461–17471.
[30] P. Liu, D.C.M. Hu, T.Q. Tran, D. Jewell, H.M. Duong, Electrical property enhance-
ment of carbon nanotube fibers from post treatments, Colloids Surf. A Physicochem.
Eng. Asp. 509 (2016) 384–389.
[31] T.Q. Tran, Z. Fan, A. Mikhalchan, P. Liu, H.M. Duong, Post-treatments for multi-
functional property enhancement of carbon nanotube fibers from the floating catalyst
method, ACS Appl. Mater. Interfaces 8 (2016) 7948–7956.
[32] B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, et al., Macroscopic
fibers and ribbons of oriented carbon nanotubes, Science 290 (2000) 1331–1334.
[33] A.B. Dalton, S. Collins, E. Muñoz, J.M. Razal, V.H. Ebron, J.P. Ferraris, et al.,
Super-tough carbon-nanotube fibres, Nature 423 (2003) 703.
[34] G. Gu, M. Schmid, P.-W. Chiu, A. Minett, J. Fraysse, G.-T. Kim, et al., V2O5 nanofibre
sheet actuators, Nat. Mater. 2 (2003) 316.
[35] M.E. Kozlov, R.C. Capps, W.M. Sampson, V.H. Ebron, J.P. Ferraris, R.H. Baughman, Spin-
ning solid and hollow polymer-free carbon nanotube fibers, Adv. Mater. 17 (2005) 614–617.
[36] L.K. Randeniya, A. Bendavid, P.J. Martin, C.D. Tran, Composite yarns of multiwalled
carbon nanotubes with metallic electrical conductivity, Small 6 (2010) 1806–1811.
[37] Y. Zhao, J. Wei, R. Vajtai, P.M. Ajayan, E.V. Barrera, Iodine doped carbon nanotube
cables exceeding specific electrical conductivity of metals, Sci. Rep. 1 (2011) 83.
[38] K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett, et al., High-
performance carbon nanotube fiber, Science 318 (2007) 1892–1895.