Page 135 - Carbon Nanotube Fibres and Yarns
P. 135

80
                           Strength
                     70    Young’s modulus
                    Improvement factor  50
                     60
                     40
                     30
                     20
                     10
                      0
                          liquid   acid    laser   liquid  Mechanical Mechanical
                        densification  treatment  treatment  densification densification densification
                                                 + infiltration   + infiltration
                  (A)                      Post-treatment methods

                          6     CNT ribbon from
                                aerogel spinning
                          5
                        Tensile strength (GPa)  4 3  CNT fiber from  PAN carbon fiber





                                              array spinning
                                 wet spinning
                                                       CNT fiber
                          1 2    CNT fiber from      This work
                                                       CNT ribbon
                                                       Cross-linked CNT ribbon
                          0
                           0    100   200   300   400    500   600
                      (B)               Young’s modulus (GPa)
              Fig. 6.16  (A) Comparisons of improvement factors of different posttreatments in litera-
              ture, including liquid densification [22], acid treatment [52], laser treatment [67], hybrid
              treatment of liquid densification and polymer infiltration [22], mechanical densification
              [26], and a combination of mechanical densification and polymer infiltration, (B) com-
              parisons of mechanical properties of the best CNT fibers from array-spinning [20] and
              wet-spinning [1], ribbons from aerogel spinning, and PAN carbon fibers [26]. (Sources of
              (A): K. Liu, Y. Sun, X. Lin, R. Zhou, J. Wang, S. Fan, et al., Scratch-resistant, highly conductive,
              and high-strength carbon nanotube-based composite yarns, ACS Nano 4 (2010) 5827–5834;
              K. Wang, M. Li, Y.N. Liu, Y. Gu, Q. Li, Z. Zhang, Effect of acidification conditions on the prop-
              erties of carbon nanotube fibers, Appl. Surf. Sci. 292 (2014) 469–474; K. Liu, F. Zhu, L. Liu,
              Y. Sun, S. Fan, K. Jiang, Fabrication and processing of high-strength densely packed carbon
              nanotube yarns without solution processes, Nanoscale 4 (2012) 3389–3393; J.N. Wang,
              X.G. Luo, T. Wu, Y. Chen, High-strength carbon nanotube fibre-like ribbon with high ductil-
              ity and high electrical conductivity, Nat. Commun. 5 (2014) 3848. Sources of (B): X. Zhang,
              Q. Li, Y. Tu, Y. Li, J.Y. Coulter, L. Zheng, et al., Strong  carbon-nanotube fibers spun from long
              carbon-nanotube arrays, Small 3 (2007) 244–248; N. Behabtu, C.C. Young, D.E. Tsentalovich,
              O. Kleinerman, X. Wang, A.W.K. Ma, et al., Strong, light, multifunctional fibers of carbon nano-
              tubes with ultrahigh conductivity, Science 339 (2013) 182–186; J.N. Wang, X.G. Luo, T. Wu,
              Y. Chen, High-strength carbon nanotube fibre-like ribbon with high ductility and high electri-
              cal conductivity, Nat. Commun. 5 (2014) 3848.)
   130   131   132   133   134   135   136   137   138   139   140