Page 142 - Carbon Nanotube Fibres and Yarns
P. 142
134 Carbon Nanotube Fibers and Yarns
[59] M. Miao, S.C. Hawkins, J.Y. Cai, T.R. Gengenbach, R. Knott, C.P. Huynh, Effect of
gamma-irradiation on the mechanical properties of carbon nanotube yarns, Carbon 49
(2011) 4940–4947.
[60] J.G. Gigax, P.D. Bradford, L. Shao, Radiation-induced mechanical property changes of
CNT yarn, Nucl. Instrum. Methods Phys. Res., Sect. B 409 (2017) 268–271.
[61] A. Mikhalchan, Z. Fan, T.Q. Tran, P. Liu, V.B.C. Tan, T.-E. Tay, et al., Continuous and
scalable fabrication and multifunctional properties of carbon nanotube aerogels from
the floating catalyst method, Carbon 102 (2016) 409–418.
[62] R.M. Sundaram, A.H. Windle, One-step purification of direct-spun CNT fibers by
post-production sonication, Mater. Des. 126 (2017) 85–90.
[63] P. Liu, A. Lam, Z. Fan, T.Q. Tran, H.M. Duong, Advanced multifunctional properties of
aligned carbon nanotube-epoxy thin film composites, Mater. Des. 87 (2015) 600–605.
[64] W. Ma, L. Liu, Z. Zhang, R. Yang, G. Liu, T. Zhang, et al., High-strength composite fibers:
realizing true potential of carbon nanotubes in polymer matrix through continuous reticu-
late architecture and molecular level couplings, Nano Lett. 9 (2009) 2855–2861.
[65] A.V. Krasheninnikov, F. Banhart, Engineering of nanostructured carbon materials with
electron or ion beams, Nat. Mater. 6 (2007) 723–733.
[66] C.L. Pint, Y.Q. Xu, M. Pasquali, R.H. Hauge, Formation of highly dense aligned rib-
bons and transparent films of single-walled carbon nanotubes directly from carpets,
ACS Nano 2 (2008) 1871–1878.
[67] K. Liu, F. Zhu, L. Liu, Y. Sun, S. Fan, K. Jiang, Fabrication and processing of high-
strength densely packed carbon nanotube yarns without solution processes, Nanoscale
4 (2012) 3389–3393.
[68] W.W. Morton, J.W. Hearle, Physical Properties of Textile Fibers, fourth ed., The textile
Institute, Manchester, 2008.
[69] P. Liu, Y.F. Tan, D.C.M. Hu, D. Jewell, H.M. Duong, Multi-property enhancement
of aligned carbon nanotube thin films from floating catalyst method, Mater. Des. 108
(2016) 754–760.
[70] A. Yu, E. Bekyarova, M.E. Itkis, D. Fakhrutdinov, R. Webster, R.C. Haddon, Ap-
plication of centrifugation to the large-scale purification of electric arc-produced
single-walled carbon nanotubes, J. Am. Chem. Soc. 128 (2006) 9902–9908.
[71] J.M. Lambert, P.M. Ajayan, P. Bernier, J.M. Planeix, V. Brotons, B. Coq, et al., Improv-
ing conditions towards isolating single-shell carbon nanotubes, Chem. Phys. Lett. 226
(1994) 364–371.
[72] J.M. Bonard, T. Stora, J.P. Salvetat, F. Maier, T. Stöckli, C. Duschl, et al., Purification and
size-selection of carbon nanotubes, Adv. Mater. 9 (1997) 827–831.
[73] Y. Kim, D.E. Luzzi, Purification of pulsed laser synthesized single wall carbon nano-
tubes by magnetic filtration, J. Phys. Chem. B 109 (2005) 16636–16643.
[74] H. Zhang, C.H. Sun, F. Li, H.X. Li, H.M. Cheng, Purification of multiwalled carbon
nanotubes by annealing and extraction based on the difference in van der waals poten-
tial, J. Phys. Chem. B 110 (2006) 9477–9481.
[75] P. Hou, C. Liu, Y. Tong, S. Xu, M. Liu, H. Cheng, Purification of single-walled carbon
nanotubes synthesized by the hydrogen arc-discharge method, J. Mater. Res. 16 (2001)
2526–2529.
[76] B.L. Wardle, D.S. Saito, E.J. García, A.J. Hart, R. Guzmán De Villoria, E.A. Verploe-
gen, Fabrication and characterization of ultrahigh-volume-fraction aligned carbon
nanotube-polymer composites, Adv. Mater. 20 (2008) 2707–2714.
[77] K. Jiang, J. Wang, Q. Li, L. Liu, C. Liu, S. Fan, Superaligned carbon nanotube arrays,
films, and yarns: a road to applications, Adv. Mater. 23 (2011) 1154–1161.
[78] J.M. Razal, K.J. Gilmore, G.G. Wallace, Carbon nanotube biofiber formation in a
polymer-free coagulation bath, Adv. Funct. Mater. 18 (2008) 61–66.
[79] Z. Huang, M. Gao, T. Pan, Y. Zhang, B. Zeng, W. Liang, et al., Microstructure depend-
ence of heat sink constructed by carbon nanotubes for chip cooling, J. Appl. Phys. 117
(2015) 024901.