Page 188 - Carbon Nanotube Fibres and Yarns
P. 188
178 Carbon Nanotube Fibers and Yarns
[5] M. Zhang, K. Atkinson, R.H. Baughman, Multifunctional carbon nanotube yarns by
downsizing an ancient technology, Science 306 (5700) (2004) 1358–1361.
[6] M. Miao, The role of twist in dry spun carbon nanotube yarns, Carbon 96 (2016)
819–826.
[7] C. Gégauff, Force et elasticite des files en coton, Bull. Soc. Ind. Mulhouse 77 (1907)
153–213.
[8] J.W.S. Hearle, P. Grosberg, S. Backer, Structural Mechanics of Fibers, Yarns, and Fab-
rics, Wiley-Interscience, New York, 1969.
[9] K. Liu, Y. Sun, R. Zhou, H. Zhu, J. Wang, L. Liu, et al., Carbon nanotube yarns with
high tensile strength made by a twisting and shrinking method, Nanotechnology 21
(4) (2010). 045708.
[10] S. Zhang, L. Zhu, M.L. Minus, H.G. Chae, S. Jagannathan, C.-P. Wong, et al.,
Solid-state spun fibers and yarns from 1-mm long carbon nanotube forests syn-
thesized by water-assisted chemical vapor deposition, J. Mater. Sci. 43 (13) (2008)
4356–4362.
[11] L. Xiao, P. Liu, L. Liu, K. Jiang, X. Feng, Y. Wei, et al., Barium-functionalized multi-
walled carbon nanotube yarns as low-work-function thermionic cathodes, Appl. Phys.
Lett. 92 (15) (2008). 153108.
[12] S.A. Khodier, Measurement of wire diameter by optical diffraction, Opt. Laser Tech-
nol. 36 (1) (2004) 63–67.
[13] X. Zhang, Q. Li, Y. Tu, Y. Li, J.Y. Coulter, L. Zheng, et al., Strong carbon-nanotube
fibers spun from long carbon-nanotube arrays, Small 3 (2) (2007) 244–248.
[14] M. Miao, J. McDonnell, L. Vuckovic, S.C. Hawkins, Poisson’s ratio and porosity of
carbon nanotube dry-spun yarns, Carbon 48 (10) (2010) 2802–2811.
[15] K. Atkinson, S. Hawkins, C. Huynh, C. Skourtis, J. Dai, M. Zhang, et al., Multi-
functional carbon nanotube yarns and transparent sheets: fabrication, properties, and
applications, Phys. B Condens. Matter 394 (2) (2007) 339–343.
[16] J.E. Booth, Principles of Textile Testing, 1969.
[17] C. Laurent, E. Flahaut, A. Peigney, The weight and density of carbon nanotubes versus
the number of walls and diameter, Carbon 48 (10) (2010) 2994–2996.
[18] N. Chiodarelli, O. Richard, H. Bender, M. Heyns, S. De Gendt, G. Groeseneken,
et al., Correlation between number of walls and diameter in multiwall carbon nano-
tubes grown by chemical vapor deposition, Carbon 50 (5) (2012) 1748–1752.
[19] C. Van Wyk, Note on the compressibility of wool, J. Text. Inst. Trans. 37 (12) (1946)
T285–T292.
[20] S. Toll, Packing mechanics of fiber reinforcements, Polym. Eng. Sci. 38 (8) (1998)
1337–1350.
[21] W. Morton, K. Yen, The arrangement of fibres in fibro yarns, J. Text. Inst. Trans. 43 (2)
(1952) T60–T66.
[22] P. Grosberg, W. Oxenham, M. Miao, The insertion of ‘twist’ into yarns by means of
air-jets. Part I: an experimental study of air-jet spinning, J. Text. Inst. 78 (3) (1987)
189–203.
[23] J. Lappage, D. Crook, E. Garbutt, Yarn manufacture by the rub-felting process, in:
Proceedings of the Seventh International Wool Textile Research Conference Tokyo,
1985, pp. 418–426.
[24] M. Miao, S. M-CC, Air interlaced yarn structure and properties, Text. Res. J. 65 (8)
(1995) 433–440.
[25] K. Sears, C. Skourtis, K. Atkinson, N. Finn, W. Humphries, Focused ion beam milling
of carbon nanotube yarns to study the relationship between structure and strength,
Carbon 48 (15) (2010) 4450–4456.
[26] D. Zhang, M. Miao, H. Niu, Z. Wei, Core-spun carbon nanotube yarn supercapaci-
tors for wearable electronic textiles, ACS Nano 8 (5) (2014) 4571–4579.