Page 189 - Carbon Nanotube Fibres and Yarns
P. 189

Carbon nanotube yarn structures and properties   179


                [27]  M. Miao, Electrical conductivity of pure carbon nanotube yarns, Carbon 49 (12)
                  (2011) 3755–3761.
                [28]  C.A. Lawrence, Advances in Yarn Spinning Technology, Woodhead Publishing Ltd.,
                  Oxford, 2010.
                [29]  M. Miao, Production, structure and properties of twistless carbon nanotube yarns
                  with a high density sheath, Carbon 50 (13) (2012) 4973–4983.
                [30]  K. Sugano, M. Kurata, H. Kawada, Evaluation of mechanical properties of untwisted car-
                  bon nanotube yarn for application to composite materials, Carbon 78 (2014) 356–365.
                [31]  J. Qiu, J. Terrones, J.J. Vilatela, M.E. Vickers, J.A. Elliott, A.H. Windle, Liquid infil-
                  tration into carbon nanotube fibers: effect on structure and electrical properties, ACS
                  Nano 7 (10) (2013) 8412–8422.
                [32]  H. Cho, H. Lee, E. Oh, S.-H. Lee, J. Park, H.J. Park, et al., Hierarchical structure
                  of carbon nanotube fibers, and the change of structure during densification by wet
                  stretching, Carbon 136 (2018) 409–416.
                [33]  J. Wang, X. Luo, T. Wu, Y. Chen, High-strength carbon nanotube fibre-like ribbon
                  with high ductility and high electrical conductivity, Nat. Commun. 5 (2014) 3848.
                [34]  J. Wang, M. Miao, Z. Wang, W. Humphries, Q. Gu, A method of mobilizing and
                  aligning carbon nanotubes and its use in gel spinning of composite fibres, Carbon 57
                  (2013). 217–226.
                [35]  W.A. Chapkin, J.K. Wenderott, A.I. Taub, Length dependence of electrostatically in-
                  duced carbon nanotube alignment, Carbon (2018).
                [36]  X.-L. Xie, Y.-W. Mai, X.-P. Zhou, Dispersion and alignment of carbon nanotubes in
                  polymer matrix: a review, Mater. Sci. Eng. R. Rep. 49 (4) (2005) 89–112.
                [37]  A.M.H. Amani, S. Alireza, S.M. Mousavi, S.M. Abrishamifar, A. Vojood, Electric field
                  induced alignment of carbon nanotubes: methodology and outcomes, carbon nanotubes,
                  in: M.M. Rahman (Ed.), Carbon Nanotubes—Recent Progress, IntechOpen, 2018.
                [38]  R. Downes, S. Wang, D. Haldane, A. Moench, R. Liang, Strain‐induced alignment
                  mechanisms of carbon nanotube networks, Adv. Eng. Mater. 17 (3) (2015) 349–358.
                [39]  B. Alemán, V. Reguero, B. Mas, J.J. Vilatela, Strong carbon nanotube fibers by drawing
                  inspiration from polymer fiber spinning, ACS Nano 9 (7) (2015) 7392–7398.
                [40]  F.T.  Peirce, Tensile tests for cotton yarns. Part  5. "Weakest link" theorems on the
                  strength of long and of composite specimens, J. Text. Inst. Trans. 17 (1926) 355–368.
                [41]  S. Fang, M. Zhang, A.A. Zakhidov, R.H. Baughman, Structure and process-dependent
                  properties of solid-state spun carbon nanotube yarns, J. Phys. Condens. Matter 22 (33)
                  (2010). 334221.
                [42]  Y. Zhang, L. Zheng, G. Sun, Z. Zhan, K. Liao, Failure mechanisms of carbon nano-
                  tube fibers under different strain rates, Carbon 50 (8) (2012) 2887–2893.
                [43]  F. Deng, W. Lu, H. Zhao, Y. Zhu, B.-S. Kim, T.-W. Chou, The properties of dry-spun
                  carbon nanotube fibers and their interfacial shear strength in an epoxy composite,
                  Carbon 49 (5) (2011) 1752–1757.
                [44]  A.H. Barber, R. Andrews, L.S. Schadler, H.D. Wagner, On the tensile strength distri-
                  bution of multiwalled carbon nanotubes, Appl. Phys. Lett. 87 (20) (2005). 203106.
                [45]  M. Zu, Q. Li, Y. Zhu, M. Dey, G. Wang, W. Lu, et al., The effective interfacial shear
                  strength of carbon nanotube fibers in an epoxy matrix characterized by a microdrop-
                  let test, Carbon 50 (2012) 1271–1279.
                [46]  Y. Jung, Y.S. Cho, J.W. Lee, J.Y. Oh, C.R. Park, How can we make carbon nanotube
                  yarn stronger? Compos. Sci. Technol. 166 (2018) 95–108.
                [47]  J. Jia, J. Zhao, G. Xu, J. Di, Z. Yong, Y. Tao, et al., A comparison of the mechanical prop-
                  erties of fibers spun from different carbon nanotubes, Carbon 49 (4) (2011) 1333–1339.
                [48]  M.D. Yadav, K. Dasgupta, A.W. Patwardhan, J.B. Joshi, High performance fibers from
                  carbon nanotubes: synthesis, characterization, and applications in composites. A re-
                  view, Ind. Eng. Chem. Res. 56 (44) (2017) 12407–12437.
   184   185   186   187   188   189   190   191   192   193   194