Page 189 - Carbon Nanotube Fibres and Yarns
P. 189
Carbon nanotube yarn structures and properties 179
[27] M. Miao, Electrical conductivity of pure carbon nanotube yarns, Carbon 49 (12)
(2011) 3755–3761.
[28] C.A. Lawrence, Advances in Yarn Spinning Technology, Woodhead Publishing Ltd.,
Oxford, 2010.
[29] M. Miao, Production, structure and properties of twistless carbon nanotube yarns
with a high density sheath, Carbon 50 (13) (2012) 4973–4983.
[30] K. Sugano, M. Kurata, H. Kawada, Evaluation of mechanical properties of untwisted car-
bon nanotube yarn for application to composite materials, Carbon 78 (2014) 356–365.
[31] J. Qiu, J. Terrones, J.J. Vilatela, M.E. Vickers, J.A. Elliott, A.H. Windle, Liquid infil-
tration into carbon nanotube fibers: effect on structure and electrical properties, ACS
Nano 7 (10) (2013) 8412–8422.
[32] H. Cho, H. Lee, E. Oh, S.-H. Lee, J. Park, H.J. Park, et al., Hierarchical structure
of carbon nanotube fibers, and the change of structure during densification by wet
stretching, Carbon 136 (2018) 409–416.
[33] J. Wang, X. Luo, T. Wu, Y. Chen, High-strength carbon nanotube fibre-like ribbon
with high ductility and high electrical conductivity, Nat. Commun. 5 (2014) 3848.
[34] J. Wang, M. Miao, Z. Wang, W. Humphries, Q. Gu, A method of mobilizing and
aligning carbon nanotubes and its use in gel spinning of composite fibres, Carbon 57
(2013). 217–226.
[35] W.A. Chapkin, J.K. Wenderott, A.I. Taub, Length dependence of electrostatically in-
duced carbon nanotube alignment, Carbon (2018).
[36] X.-L. Xie, Y.-W. Mai, X.-P. Zhou, Dispersion and alignment of carbon nanotubes in
polymer matrix: a review, Mater. Sci. Eng. R. Rep. 49 (4) (2005) 89–112.
[37] A.M.H. Amani, S. Alireza, S.M. Mousavi, S.M. Abrishamifar, A. Vojood, Electric field
induced alignment of carbon nanotubes: methodology and outcomes, carbon nanotubes,
in: M.M. Rahman (Ed.), Carbon Nanotubes—Recent Progress, IntechOpen, 2018.
[38] R. Downes, S. Wang, D. Haldane, A. Moench, R. Liang, Strain‐induced alignment
mechanisms of carbon nanotube networks, Adv. Eng. Mater. 17 (3) (2015) 349–358.
[39] B. Alemán, V. Reguero, B. Mas, J.J. Vilatela, Strong carbon nanotube fibers by drawing
inspiration from polymer fiber spinning, ACS Nano 9 (7) (2015) 7392–7398.
[40] F.T. Peirce, Tensile tests for cotton yarns. Part 5. "Weakest link" theorems on the
strength of long and of composite specimens, J. Text. Inst. Trans. 17 (1926) 355–368.
[41] S. Fang, M. Zhang, A.A. Zakhidov, R.H. Baughman, Structure and process-dependent
properties of solid-state spun carbon nanotube yarns, J. Phys. Condens. Matter 22 (33)
(2010). 334221.
[42] Y. Zhang, L. Zheng, G. Sun, Z. Zhan, K. Liao, Failure mechanisms of carbon nano-
tube fibers under different strain rates, Carbon 50 (8) (2012) 2887–2893.
[43] F. Deng, W. Lu, H. Zhao, Y. Zhu, B.-S. Kim, T.-W. Chou, The properties of dry-spun
carbon nanotube fibers and their interfacial shear strength in an epoxy composite,
Carbon 49 (5) (2011) 1752–1757.
[44] A.H. Barber, R. Andrews, L.S. Schadler, H.D. Wagner, On the tensile strength distri-
bution of multiwalled carbon nanotubes, Appl. Phys. Lett. 87 (20) (2005). 203106.
[45] M. Zu, Q. Li, Y. Zhu, M. Dey, G. Wang, W. Lu, et al., The effective interfacial shear
strength of carbon nanotube fibers in an epoxy matrix characterized by a microdrop-
let test, Carbon 50 (2012) 1271–1279.
[46] Y. Jung, Y.S. Cho, J.W. Lee, J.Y. Oh, C.R. Park, How can we make carbon nanotube
yarn stronger? Compos. Sci. Technol. 166 (2018) 95–108.
[47] J. Jia, J. Zhao, G. Xu, J. Di, Z. Yong, Y. Tao, et al., A comparison of the mechanical prop-
erties of fibers spun from different carbon nanotubes, Carbon 49 (4) (2011) 1333–1339.
[48] M.D. Yadav, K. Dasgupta, A.W. Patwardhan, J.B. Joshi, High performance fibers from
carbon nanotubes: synthesis, characterization, and applications in composites. A re-
view, Ind. Eng. Chem. Res. 56 (44) (2017) 12407–12437.