Page 192 - Carbon Nanotube Fibres and Yarns
P. 192
182 Carbon Nanotube Fibers and Yarns
[89] J. Steinmetz, M. Glerup, M. Paillet, P. Bernier, M. Holzinger, Production of pure
nanotube fibers using a modified wet-spinning method, Carbon 43 (11) (2005) 2397–
2400.
[90] S. Zhang, K.K. Koziol, I.A. Kinloch, A.H. Windle, Macroscopic fibers of well‐aligned
carbon nanotubes by wet spinning, Small 4 (8) (2008) 1217–1222.
[91] V.A. Davis, A.N.G. Parra-Vasquez, M.J. Green, P.K. Rai, N. Behabtu, V. Prieto, et al.,
True solutions of single-walled carbon nanotubes for assembly into macroscopic ma-
terials, Nat. Nanotechnol. 4 (12) (2009) 830.
[92] N. Behabtu, C.C. Young, D.E. Tsentalovich, O. Kleinerman, X. Wang, A.W. Ma,
et al., Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conduc-
tivity, Science 339 (6116) (2013) 182–186.
[93] J.F. Niven, M.B. Johnson, S.M. Juckes, M.A. White, N.T. Alvarez, V. Shanov, Influence
of annealing on thermal and electrical properties of carbon nanotube yarns, Carbon
99 (2016) 485–490.
[94] F. Su, M. Miao, H. Niu, Z. Wei, Gamma-irradiated carbon nanotube yarn as substrate
for high-performance fiber supercapacitors, ACS Appl. Mater. Interfaces 6 (4) (2014)
2553–2560.
[95] P. Liu, D.C. Hu, T.Q. Tran, D. Jewell, H.M. Duong, Electrical property enhancement
of carbon nanotube fibers from post treatments, Colloids Surf. A Physicochem. Eng.
Asp. 509 (2016) 384–389.
[96] Y. Zhao, J. Wei, R. Vajtai, P.M. Ajayan, E.V. Barrera, Iodine doped carbon nanotube
cables exceeding specific electrical conductivity of metals, Sci. Rep. 1 (2011). 83.
[97] D. Zhang, Y. Zhang, M. Miao, Metallic conductivity transition of carbon nanotube
yarns coated with silver particles, Nanotechnology 25 (27) (2014). 275702.
[98] L.K. Randeniya, A. Bendavid, P.J. Martin, C.-D. Tran, Composite yarns of multi-
walled carbon nanotubes with metallic electrical conductivity, Small 6 (16) (2010)
1806–1811.
[99] E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Thermal conductance of an indi-
vidual single-wall carbon nanotube above room temperature, Nano Lett. 6 (1) (2006)
96–100.
[100] P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Thermal transport measurements of indi-
vidual multiwalled nanotubes, Phys. Rev. Lett. 87 (21) (2001). 215502.
[101] L.H. Peebles, Carbon fibers: Formation, Structure, and Properties, CRC Press, 2018.
[102] T.S. Gspann, S.M. Juckes, J.F. Niven, M.B. Johnson, J.A. Elliott, M.A. White, et al.,
High thermal conductivities of carbon nanotube films and micro-fibres and their
dependence on morphology, Carbon 114 (2017) 160–168.
[103] K.K. Koziol, D. Janas, E. Brown, L. Hao, Thermal properties of continuously spun
carbon nanotube fibres, Phys. E. 88 (2017) 104–108.
[104] E. Gao, W. Lu, Z. Xu, Strength loss of carbon nanotube fibers explained in a three-level
hierarchical model, Carbon 138 (2018) 134–142.
[105] J.J. Vilatela, J.A. Elliott, A.H. Windle, A model for the strength of yarn-like carbon
nanotube fibers, ASC Nano 5 (3) (2011) 1921–1927.
[106] X. Zhang, Q. Li, Enhancement of friction between carbon nanotubes: an efficient
strategy to strengthen fibers, ACS Nano 4 (1) (2009) 312–316.
[107] T. Hongu, M. Takigami, G.O. Phillips, New Millennium Fibers, Elsevier, 2005.
[108] A. Pregoretti, M. Traina, A. Bunsell, Handbook of Tensile Properties of Textile and
Technical Fibers, Woodhead Publishing Limited, Cambridge, 2009.
[109] W.E. Morton, J.W.S. Hearle, Physical Properties of Textile Fibres, third ed., The Textile
Institute, Manchester, 1993.
[110] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrin-
sic strength of monolayer graphene, Science 321 (5887) (2008) 385–388.