Page 190 - Carbon Nanotube Fibres and Yarns
P. 190
180 Carbon Nanotube Fibers and Yarns
[49] W. Lu, M. Zu, J.-H. Byun, B.-S. Kim, T.-W. Chou, State of the art of carbon nano-
tube fibers: opportunities and challenges, Adv. Mater. 24 (14) (2012) 1805–1833.
[50] I. Frydrych, Relation of single fiber and bundle strengths of cotton, Text. Res. J. 65 (9)
(1995) 513–521.
[51] P.E. Sasser, F.M. Shofner, Y.T. Chu, C.K. Shofner, M.G. Townes, Interpretations of
single fiber, bundle, and yarn tenacity data, Text. Res. J. 61 (11) (1991) 681–690.
[52] F.A. Hill, T.F. Havel, A.J. Hart, C. Livermore, Enhancing the tensile properties of con-
tinuous millimeter-scale carbon nanotube fibers by densification, ACS Appl. Mater.
Interfaces 5 (15) (2013) 7198–7207.
[53] Q.W. Li, X.F. Zhang, R.F. DePaula, L.X. Zheng, Y.H. Zhao, L. Stan, et al., Sustained
growth of ultralong carbon nanotube arrays for fiber spinning, Adv. Mater. 18 (23)
(2006) 3160–3163.
[54] A. Ghemes, Y. Minami, J. Muramatsu, M. Okada, H. Mimura, Y. Inoue, Fabrica-
tion and mechanical properties of carbon nanotube yarns spun from ultra-long
multi-walled carbon nanotube arrays, Carbon 50 (12) (2012) 4579–4587.
[55] M. Miao, J.H. Xin, Engineering of High-Performance Textiles, Woodhead Publishing,
2017.
[56] C. Jayasinghe, S. Chakrabarti, M.J. Schulz, V. Shanov, Spinning yarn from long carbon
nanotube arrays, J. Mater. Res. 26 (5) (2011) 645–651.
[57] J. Zhao, X. Zhang, J. Di, G. Xu, X. Yang, X. Liu, et al., Double-peak mechanical
properties of carbon-nanotube fibers, Small 6 (22) (2010) 2612–2617.
[58] C.D. Tran, W. Humphries, S.M. Smith, C. Huynh, S. Lucas, Improving the tensile
strength of carbon nanotube spun yarns using a modified spinning process, Carbon 47
(11) (2009) 2662–2670.
[59] M. Miao, Mechanisms of yarn twist blockage, Text. Res. J. 68 (2) (1998) 135–140.
[60] D.E.A. Plate, Sirospun new spinning technique for worsted weaving yarn, J Australas.
Text. 2 (1) (1982) 10–12.
[61] S. Li, X. Zhang, J. Zhao, F. Meng, G. Xu, Z. Yong, et al., Enhancement of carbon
nanotube fibres using different solvents and polymers, Compos. Sci. Technol. 72 (12)
(2012) 1402–1407.
[62] A.V. Krasheninnikov, F. Banhart, Engineering of nanostructured carbon materials
with electron or ion beams, Nat. Mater. 6 (2007) 723–733.
[63] B. Peng, M. Locascio, P. Zapol, S. Li, S.L. Mielke, G.C. Schatz, et al., Measurements
of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced
crosslinking improvements, Nat. Nanotechnol. 3 (10) (2008) 626–631.
[64] A. Kis, G. Csányi, J.P. Salvetat, T.-N. Lee, E. Couteau, A.J. Kulik, et al., Reinforcement
of single-walled carbon nanotube bundles by intertube bridging, Nat. Mater. 3 (3)
(2004) 153–157.
[65] M. Miao, S. Hawkins, J. Cai, T. Gengenbach, R. Knot, C. Huyhn, Effect of gamma
irradiation on the mechanical properties of carbon nanotube yarns, Carbon 49 (14)
(2011) 4940–4947.
[66] W.H. Charch, W.W. Moseley Jr., Structure-property relationships in synthetic fibers:
Part 1: structure as revealed by sonic observations, Text. Res. J. 29 (1959) 525–535.
[67] J.C. Smith, P.J. Shouse, J.M. Blandford, K.M. Towne, Stress-strain relationships in yarns
subjected to rapid impact loading, part 7: stress-strain curves and breaking-energy data
for textile yarns, Text. Res. J. 31 (1961) 721–734.
[68] P. Wang, X. Zhang, R.V. Hansen, G. Sun, H. Zhang, L. Zheng, et al., Strengthening
and failure mechanisms of individual carbon nanotube fibers under dynamic tensile
loading, Carbon 102 (2016) 18–31.
[69] M. Miao, Characteristics of carbon nanotube yarn structure unveiled by acoustic wave
propagation, Carbon 91 (2015) 163–170.