Page 176 - Carbon Nanotubes
P. 176

Onion-like graphitic particles                    167
           like  particle:  spherical or  polyhedral)  and  the  size   5.  S. Iijima, J. Crysf. Growth 50, 675 (1980).
           where the transition  is between these closed surface   6.  D. Ugarte,  Chem. Phys. Lett. 198, 596 (1992).
           particles and the macroscopic planar graphite. There   7.  Y.  Saito, T. Yoshikawa, M. Inagaki, M. Tomita, and T.
                                                         Hayashi,  Chem. Phys. Lett. 204, 277 (1993).
           are still several difficulties in answering this question:   8.  R. S. Ruoff, D. C. Lorents, B. Chan, R. Malhotra, and
           (a) from the theoretical point of view, the large number   S. Subramoney,  Science 259, 346 (1993).
           of atoms to be considered renders the computational   9.  M.  Tomita, Y.  Saito, and T.  Hayashi,  Jpn.  J. &pi.
           evaluation very difficult; (b) from the experimental   Phys. 32, L280 (1993).
           point of view, the quasi-spherical structures have only   10.  D.  Ugarte, Chem. Phys. Lett. 209, 99 (1993).
                                                      11.  D.  Ugarte, Nature 359, 707 (1992).
           been synthesised in situ in an electron microscope.   12.  T. W. Ebbesen, P. M. Ajayan, H. Hiura, and K. Tani-
             At present,  major  efforts  are being done to de-   gaki, Nature 367, 519 (1994).
           velop the production and purification of macroscopic   13.  W. A. de Heer and D. Ugarte,  Chem. Phys. Lett. 207,
           quantities of the quasi-spherical onion-like particles.   480 (1993).
           The understanding of the formation mechanism and   14. D. Ugarte,  Carbon 32,  1245 (1994).
                                                      15.  D. Ugarte, Europhys. Lett. 22, 45 (1993).
           energetics involved would allow the development of   16.  K. Yamada, H. Kunishige, and A. B.  Sawaoka, Natur-
           efficient  production  methods.  The  annealing  on   wissenschoften 78, 450 (1991).
           nanometer-sized  diamonds  reported  by  Kuznetsov   17.  N. Hatta and K. Murata, Chem. Phys. Lett. 217, 398
                                                         (1994).
           et al. [ 191 presents a promising way to generate compact   18.  L. S. Weathers and W. A. Basset, Phys. Chem. Miner-
           graphitic particles, if we are able to overcome the dif-   als 15, 105 (1987).
           ficulty of producing large quantities of nanodiamonds.   19.  V.  L. Kuznetsov, A.  L. Chuvilin, Y.  V.  Butenko, I. Y.
             We hope that macroscopic samples of quasi-spherical   Mal'kov,  and V. M. Titov, Chem. Phys. Lett. 222, 343
           onion-like particles will soon become available, and   ( 1994).
           then we will be able to characterize these systems in   20.  R. E. Smalley, Acc.  Chem. Res. 25, 98 (1992).
                                                      21.  A. Oberlin,  Carbon 22, 521 (1984).
           detail. Probably a new generation of carbon materi-   22.  R. E. Smalley, Mater. Sci. Eng. B 19, 1 (1992).
           als can be generated by the three-dimensional  pack-   23.  Q. L. Zhang,  S. C. O'Brien J. R. Heath, Y.  Liu, R. E
           ing of  quasi-spherical multi-shell fullerenes.   Curl, H. W. Kroto, and R. E. Smalley, J. Phys. Chem.
                                                         90, 525 (1986).
                                                      24.  H. W.  Kroto and K. McKay, Nature 331, 328 (1988).
           Acknowledgements-The  author is most grateful to W. de   25.  D.  Ugarte,  Chem. Phys. Left. 207, 473 (1993).
           Heer for invaluable discussions and advice. We are indebted   26.  A. Maiti, C. J.  Bravbec,  and J. Bernholc, Phys. Rev.
           to R. Monot and A. Chatelain for several useful remarks.   Lett. 70, 3023 (1993).
           We  thank  the  Brazilian  National  Council  of  Science and   27.  D. Tomanek, W. Zhong, and E. Krastev, Phys. Rev. B
           Technology (CNPq) and Swiss National Science Foundation   48,  15461 (1993).
           for financial support.                     28.  H. W. Kroto, Nature 359, 670 (1992).
                                                      29.  K. G. McKay, H. W. Kroto, and D. J. Wales, J. Chem.
                                                         SOC. Faraday Trans. 88, 2815 (1992).
                          REFERENCE§                  30.  M. Yoshida and E. Osawa, Ful. Sci. Tech. 1, 55 (1993).
                                                      3  1.  D. York, J. P.  Lu, and W. Yang, Phys. Rev. B 49,8526
            1.  H. W.  Kroto, J. R. Heath, S. C. O'Brien, R. F.  Curl, and   (1 994).
              R. E. Smalley, Nature 318, 162 (1985).   32.  L. T.  Scott, M. M. Hashemi, and M. S. Bratcher, J. Am.
            2.  W. Kratschmer, L. D. Lamb, K. Foristopoulos, and D. R.   Chem.  SOC. 114, 1920 (1992).
              Huffman, Nature 347, 354 (1990).        33.  A. Maiti, C. J. Brabec, and J. Bernholc, Modern Phys.
            3.  S.  Iijima, Nafure 354, 56 (1991).       Rev. Lett. B 7,  1883 (1993).
            4.  T.  W.  Ebbesen  and  P.  M.  Ajayan,  Nature  358,  220   34.  J.-C.  Charlier and J.-P.  Michenaud, Phys. Rev. Lett. 70,
              (1992).                                    1858 (1993).
   171   172   173   174   175   176   177   178   179   180   181