Page 87 - Carbon Nanotubes
P. 87

76                            T. W. EBBESEN and T. TAKADA
                                   -
             It would be worthwhile making theoretical calculations   11.  R. Tamura  and  M. Tsukada.  Phvs.  Rev.  B  49.  7697
                                                                                  -
                                                                               .
             to evaluate the effect of defects on the nanotube prop-   (1994).
             erties. The chemistry might be affected, although to   12.  M.  Liu and J. M. Cowley,  Carbon 32, 393 (1994).
             a lesser degree because nanotubes, like graphite, are   13.  M.  Liu  and  J.  M.  Cowley,  Ultramicroscopy 53, 333
                                                           (1994).
             chemically quite  inert. If  at all possible,  nanotubes   14.  R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Chem.
             should be annealed (if not also purified) before phys-   Phys. Lett. 195, 537 (1992).
             ical measurements are made. Only then are the results   15.  C. J. Brabec, A. Maiti, and J. Bernholc,  Chem. Phys.
             likely to be consistent  and unambiguous.     Lett. 219, 473 (1994).
                                                        16.  J. C. Roux, S. Flandrois, C. Daulan, H. Saadaoui, and
                                                           0. Gonzalez, Ann. Chim. Fr. 17, 251 (1992).
                                                        17.  B. Nysten, J. C. Roux, S. Flandrois, C. Daulan, and H.
                            REFERENCES
                                                           Saadaoui, Phys. Rev. B 48,  12527 (1993).
                                                        18.  H. Hiura, T. W. Ebbesen, J. Fujita, K. Tanigaki, and 7.
              1. T. W. Ebbesen, Annu. Rev. Mater. Sci. 24, 235 (1994).
             2.  T.  W.  Ebbesen  and  P.  M. Ajayan,  Nature  358,  220   Takada, Nature 367, 148 (1994).
                (1992).                                 19.  0. Zhou, R. M. Fleming, D. W.  Murphy, C. H. Chen,
             3.  T. W. Ebbesen, P. M. Ajayan, H. Hiura, and K. Tanigaki,   R. C. Haddon, A. P.  Ramirez, and S. H. Glarum, Sci-
                                                           ence 263,  1744 (1994).
               Nature 367, 519 (1994).                  20.  M. Kosaka, T. W. Ebbesen, H. Hiura, and K. Tanigaki,
             4.  H. Hiura, T. W.  Ebbesen, K. Tanigaki, and H. Taka-   Chem. Phys. Lett. 233, 47  (1995).
                hashi, Chem. Phys. Lett. 202, 509 (1993).
             5.  J. W.  Mintmire, B. I. Dunlap, and C. T. White, Phys.   21.  S. C. Tsang, P. J. F.  Harris, and M. L. H. Green, Na-
                Rev. Lett. 68, 631 (1992).                 ture 362, 520 (1993).
             6.  N. Hamada, S. Sawada, and A. Oshiyama, Phys. Rev.   22.  P. M. Ajayan, T.  W. Ebbesen, T.  Ichihashi, S. Iijima,
                Lett. 68, 1579 (1992).                     K. Tanigaki, and H. Hiura, Nature 362, 522 (1993).
             7.  R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dressel-   23.  M. Kosaka, T. W. Ebbesen, H. Hiura, and K. Tanigaki,
                                                           Chem. Phys.  Lett. 225,  161 (1994).
                haus, Appl. Phys. Lett. 60, 2204 (1992).
              8.  H. Terrones and A. L. Mackay, Carbon 30, 1251 (1992).   24.  K.  Tanaka,  T. Sato, T.  Yamabe,  K.  Okahara, et ai.,
                                                           Chem. Phys. Lett. 223, 65 (1994).
             9.  P. M. Ajayan, T. Ichihashi, and S. Iijima, Chem. Phys.   25.  P.  J.  F.  Harris, M. L. H.  Green, and S.  C. Tsang, J.
                Lett. 202, 384 (1993).
             IO.  S. Iijima, T. Ichihashi, and Y. Ando, Nature 356, 776   Chem. SOC. Faraday Trans. 89,  1189 (1993).
                (1992).
   82   83   84   85   86   87   88   89   90   91   92