Page 273 - Chiral Separation Techniques
P. 273
References 251
[19] Ruthven D. M., Ching C. B. (1989) Counter-Current and Simulated Counter-Current Adsorption
Separation Processes, Chem. Eng. Sci. 44: 1011–1038.
[20] Zhong G., Guiochon G. (1996) Analytical Solution for the Linear Ideal Model of Simulated Mov-
ing Bed Chromatography, Chem. Eng. Sci. 51: 4307–4319.
[21] Storti G., Mazzotti M., Morbidelli M., Carrà S. (1993) Robust Design of Binary Countercurrent
Adsorption Separation Processes, AIChEJ. 39: 471–492.
[22] Storti G., Baciocchi R., Mazzotti M., Morbidelli M. (1995) Design of Optimal Operating Condi-
tions of Simulated Moving Bed Adsorptive Units, Ind. Eng. Chem. Res. 34: 288–301.
[23] Mazzotti M., Storti G., Morbidelli M. (1996) Robust Design of Countercurrent Adsorption Separa-
tion: 3. Nonstoichiometric Systems, AIChE J 42: 2784–2796.
[24] Mazzotti M., Storti G., Morbidelli M. (1997) Optimal Operation of Simulated Moving Bed Units
for Nonlinear Chromatographic Separations, J. Chromatogr. A 769: 3–24.
[25] Gentilini A., Migliorini C., Mazzotti M., Morbidelli M. (1998) Optimal Operation of Simulated
Moving-Bed Units for Non-Linear Chromatographic Separations. II. Bi-Langmuir Isotherm, J.
Chromatogr. A 805: 37–44.
[26] Pais L. S., Loureiro J. M., Rodrigues A. E. (1997b) Modeling, Simulation and Operation of a Sim-
ulated Moving Bed for Continuous Chromatographic Separation of 1,1’-bi-2-naphthol Enan-
tiomers, J. Chromatogr. A 769: 25–35.
[27] Pais L. S., Loureiro J. M., Rodrigues A. E. (1998b) Separation of Enantiomers of a Chiral Epoxide
by Simulated Moving Bed Chromatography, J. Chromatogr. A 827: 215–233.
[28] Pais L. S., Rodrigues A. E. (1998) Separation of Enantiomers by SMB Chromatography: Strategies
of Modeling and Process Performance, Fundamentals of Adsorption 6: Proceedings of the Sixth
International Conference of Fundamentals of Adsorption, F Meunier (ed.), Elsevier, Paris, p.
371–376.
[29] Bader G., Ascher U. (1987) A New Basis Implementation for a Mixed Order Boundary Value ODE
Solver, SIAM J. Sci. Stat. Comput. 8: 483–500.
[30] Ascher U., Christiansen J., Russell R. D. (1979) A Collocation Solver for Mixed Order Systems of
Boundary Value Problems, Math Comput 33: 659–679.
[31] Ascher U., Christiansen J., Russell R. D. (1981) Collocation Software for Boundary-Value ODEs.
ACM Trans. Math Software 7: 209–222.
[32] Azevêdo D. C. S., Rodrigues A. E. (1999) Design of a Simulated Moving Bed Separator in the Pres-
ence of Mass Transfer Resistances, AIChE J 45: 956–966.
[33] Pais L. S., Loureiro J. M., Rodrigues A. E. (1997a) Separation of 1,1’-bi-2-naphthol Enantiomers
by Continuous Chromatography in Simulated Moving Bed, Chem. Eng. Sci. 52: 245– 257.
[34] Nicoud R. M., Fuchs G., Adam P., Bailly M., Küsters E., Antia F., Reuille R., Schmid E. (1993)
Preparative Scale Enantioseparation of a Chiral Epoxide: Comparison of Liquid Chromatography
and Simulated Moving Bed Adsorption Technology, Chirality 5: 267–271.
[35] Küsters E., Gerber G., Antia F. D. (1995) Enantioseparation of a Chiral Epoxide by SMB Chro-
matography using Chiralcel-OD, Chromatographia 40: 387–393.
[36] Nicoud R. M. (1993) A Packing Procedure Suitable for High Flow Rate and High Stability Columns
Using Cellulose Triacetate, LC-GC Int. 6: 636–637.
[37] Nicoud R. M., Seidel-Morgenstern A. (1993) Adsorption Isotherms: Experimental Determination
and Application to Preparative Chromatography Simulated Moving Bed: Basics and Applications,
R. M Nicoud (ed.), Institut National Polytechnique de Lorraine, Nancy, France, p. 4–34.
[38] Lim B. G., Ching C. B., Tan R. (1995) Determination of Competitive Adsorption Isotherms of
Enantiomers on a Dual-site Adsorbent, Sep. Techno. 5: 213–228.
[39] Charton F., Nicoud R. M. (1995) Complete Design of a Simulated Moving Bed, J. Chromatogr. A
702: 97–112.
[40] Pröll T., Küsters E. (1998) Optimization Strategy for Simulated Moving Bed Systems, J. Chro-
matogr. A 800: 135–150.

