Page 138 - Circuit Analysis II with MATLAB Applications
P. 138

Chapter 4  The Laplace Transformation


                                          n – at          n!
                                         t e  u t   œ  -------------------------                (4.58)
                                               0
                                                         s +  a    n +  1

               n
         where   is a positive integer, and V ! – a   Thus, for n =  1 , we get the transform pair
                                                          1
                                           te – at u t   œ  ------------------                  (4.59)
                                                0
                                                          s + a    2

         for V !  –  . a

         For n =  2 , we get the transform

                                           2 – at         2!
                                          t e  u t   œ  ------------------                      (4.60)
                                                0
                                                          s +  a    3

         and in general,

                                          n – at          n!
                                         t e  u t   œ  -------------------------                (4.61)
                                               0
                                                         s + a    n +  1

         for V !  –    a
         Example 4.8


         Find L sin^  Ztu t  `  0
         Solution:

                                               f                      a
                           L sin^  Ztu t  `  0  ³     sin Z =  t e – st dt =  ³    lim  sin Zt e – st dt


                                               0                a o  f  0
         and from tables of integrals *

                                                      ax  asin bx bcos bx
                                                               –
                                                    e
                                        ax
                                     ³ e sin bxdx =  ------------------------------------------------------
                                                                 2
                                                            2
                                                           a +  b
         Then,
                                                                                          1
         *  This can also be derived from  sin Zt =  ----- e   1  jZt  –  e –  jZt    , and the use of (4.55) where e – at u t   œ  -----------  . By the lin-
                                           j2                                      0    s +  a
            earity  property, the sum of these  terms  corresponds to the sum of their Laplace  transforms.  Therefore,
                               1
                                              Z
                                     1 ·
                           1 §
            L sin Ztu t   =  ----- -------------- –  -------------- =  ----------------- 2
                       @
              >
                    0
                            ©
                                      jZ ¹
                          j2 sjZ–
                                   s +
                                            2
                                            s +
                                               Z
        4-20                                                Circuit Analysis II with MATLAB Applications
                                                                                  Orchard Publications
   133   134   135   136   137   138   139   140   141   142   143