Page 139 - Circuit Analysis II with MATLAB Applications
P. 139

The Laplace Transform of Common Functions of Time


                                                                   a
                                             e – st    s – sin Zt –  Z  Zcos  t
                     L sin  Ztu t   `  =  lim  -----------------------------------------------------------
                        ^
                                0
                                                     2
                                        a o  f      s +  Z 2
                                                                   0
                                               – as
                                                                                    Z
                                                                          Z
                                      =  lim  e      s – sin Za Z –  Zcos  a    ----------------- =  -----------------
                                              -------------------------------------------------------------- +
                                                       2
                                                                                   2
                                                                         2
                                        a o  f         s +  Z 2         s +  Z 2  s +  Z 2
         Thus, we have obtained the transform pair
                                                          Z
                                           sin Ztu t œ  -----------------                      (4.62)
                                                  0
                                                        2
                                                       s +  Z 2
         for    0   V !
         Example 4.9
         Find L cos  Zt u t  `  0
                 ^
         Solution:

                                              f                       a
                           L cos Zt u t  `  0  ³     cos Z =  t e – st dt =  ³    lim  cos Zt e – st dt


                            ^
                                              0                 a o  f  0
         and from tables of integrals *
                                                      ax  acos bx +  bsin bx
                                                     e
                                        ax
                                     ³ e cos bxdx =  ------------------------------------------------------
                                                             2
                                                           a +  b 2
         Then,
                                                                   a
                                              –
                                               st
                                             -----------------------------------------------------------
                     L cos  Zt u t  `  0  =  lim  e     s – cos Zt +  Z  Zsin  t
                        ^
                                                     2
                                        a o  f       s +  Z 2
                                                                   0
                                              e – as    s – cos Za +  Z  Zsin  a    s  s
                                      =  lim  --------------------------------------------------------------- +  ----------------- =  -----------------
                                                                                   2
                                                        2
                                                                         2
                                        a o  f         s +  Z 2         s +  Z 2  s +  Z 2
         Thus, we have the fransform pair
         *  We can use the relation  cos Zt =  1  jZt  +  e – jZt     and the linearity property, as in the derivation of the transform
                                       --- e
                                       2
                                                                               d
            of  sin Zt   on the footnote of the previous page. We can also use the transform pair  ----- ft   œ  sF s   –  f0      ; this
                                                                               dt
            is the  time differentiation property  of  (4.16).  Applying  this transform pair  for  this derivation, we get
                              1 d            1   d            1    Z       s
              L cos Ztu t   =  L --------- sin Ztu t   =  ----L ----- sin Ztu t   =  ----s----------------- =  ----------------- 2
               >
                        @
                                                        0
                                       0
                      0
                                                 dt
                              Zdt
                                                                          2
                                                                 2
                                                                     2
                                                              Z
                                             Z
                                                                s +
                                                                         s +
                                                                    Z
                                                                            Z
        Circuit Analysis II with MATLAB Applications                                            4-21
        Orchard Publications
   134   135   136   137   138   139   140   141   142   143   144