Page 189 - Complementarity and Variational Inequalities in Electronics
P. 189

180  Complementarity and Variational Inequalities in Electronics


                           and


                                                     λ 1      y 1
                                               0 ≤        ⊥        ≥ 0
                                                     λ 2      y 2
                           with
                                                          C
                                                    	     
      ⎛     ⎞

                                           
                        x 1
                                              y 1     01    −1
                                                  =               ⎝  x 2  ⎠  .
                                              y 2     01      0
                                                                    x 3
                           We have seen that we may set
                                                     z(t) = Rx(t)

                           with
                                                  ⎛                  ⎞
                                                      1
                                                     √    0     0
                                                      C 4
                                                          √
                                                  ⎜                  ⎟
                                              R =  ⎝ 0      L 3  0   ⎟
                                                  ⎜
                                                                √    ⎠
                                                     0    0       L 2
                           and
                                                   3
                                             (∀z ∈ R ) :  (z) = ψ 2 (CR −1 z)
                                                              R
                                                               +
                           so as to reduce the study of the circuit to the variational inequality
                                         dz         −1
                                        
  (t) − RAR  z(t),v − z(t)
                                         dt
                                                                   n
                                          +  (v) −  (z(t)) ≥ 0,∀v ∈ R , a.e. t ≥ 0.  (5.64)
                                                                  √          √
                                                         1
                           Note that z is easily calculated: z 1 = √ x 1 ,z 2 =  L 3 x 2 ,z 3 =  L 2 x 3 .Wealso
                                                         C 4
                           have
                                                      3
                                                (∀z ∈ R ) :  (z) =   K (z)
                           with
                                                         3
                                               K ={z ∈ R : CR −1 z ≥ 0}.
                           Here
                                                    ⎛                ⎞
                                                       0  √ 1  − √ 1
                                             CR −1  =  ⎝   L 3    L 2 ⎠ ,
                                                       0  √ 1      0
                                                           L 3
   184   185   186   187   188   189   190   191   192   193   194