Page 190 - Complementarity and Variational Inequalities in Electronics
P. 190

The Nonregular Dynamical System Chapter | 5 181


                           and thus

                                                    3                L 2
                                           K ={z ∈ R : z 2 ≥ 0 and z 3 ≤  z 2 }.
                                                                     L 3
                           Setting M =−RAR  −1 , we see that

                                               ⎛            1            ⎞
                                                   0     − √        0
                                                            L 3 C 4
                                               ⎜                         ⎟
                                                    1
                                               ⎜          R 1 +R 3   R 1  ⎟
                                          M = ⎜ √                − √     ⎟.
                                                   L 3 C 4  L 3
                                               ⎝                    L 2 L 3 ⎠
                                                   0     − √  R 1  R 1 +R 2
                                                            L 2 L 3  L 2
                           Example 70. Suppose, for example, that R 1 = R 2 = 0 and R 3 > 0. Then
                                                  ⎛            1      ⎞
                                                      0    − √      0
                                                              L 3 C 4
                                                  ⎜                   ⎟
                                             M =  ⎜   1       R 3     ⎟ .
                                                  ⎝ √               0 ⎠
                                                      L 3 C 4  L 3
                                                      0       0     0
                           We have
                                                        ⎛            ⎞
                                                           0   0   0
                                                     T  ⎜            ⎟
                                               M + M = ⎝ 0    2R 3  0 ⎠ .
                                                               L 3
                                                           0   0   0
                           The matrix M is positive semidefinite, and

                                                                3
                                                       T
                                             ker(M + M ) ={z ∈ R : z 2 = 0}.
                           We set
                                                                1    2
                                                       3
                                                (∀ z ∈ R ) : V(z) = ||z|| .
                                                                2
                           Thus
                                           (∀ z ∈ K) :
Mz,∇V(z) =
Mz,z ≥ 0

                           and

                                                          T
                                                                    3
                                 E(M, ,V ) = K ∩ ker(M + M ) ={z ∈ R : z 2 = 0 and z 3 ≤ 0}.
                           Let us set

                                                            L 2
                                                       α =     .
                                                            L 3
   185   186   187   188   189   190   191   192   193   194   195