Page 194 - Complementarity and Variational Inequalities in Electronics
P. 194

The Nonregular Dynamical System Chapter | 5 185


                                                            ∗
                                                        ∗
                                                 ∗
                                                                ∗
                                                 z ⊥ Mz ⇔ z = z = 0.
                                                                3
                                                            2
                                         ∗
                           Setting w = Mz , we note that
                                   ∗
                                                            1
                                                     ∗           ∗
                                                   w =−√        z ,
                                                                 2
                                                     1
                                                           L 3 C 4
                                                1                     R 1
                                          ∗          ∗   R 1 + R 3 ∗       ∗
                                         w = √      z +         z − √     z ,
                                          2          1           2         3
                                                L 3 C 4    L 3        L 2 L 3
                                                      R 1      R 1 + R 2 ∗
                                               ∗           ∗
                                              w =−√        z +        z .
                                               3           2           3
                                                      L 2 L 3    L 2
                           Thus
                                                        3
                                         S(M, ) ={z ∈ R : z 1 ≥ 0,z 2 = 0,z 3 = 0}.
                           The set S(M, ) is an invariant subset of E(M, ,V ). We claim that it is
                                                                                        ∗
                           the largest one. Indeed, let us study the dynamics in E(M, ,V ).Let z ∈
                           E(M, ,V ), that is, z = 0 and z = 0. We have
                                                      ∗
                                             ∗
                                             2        3
                                                     ∗
                                              z 1 (0) = z ,z 2 (0) = 0,z 3 (0) = 0,
                                                     1
                                             (∀t ≥ 0) : z 2 (t) = 0 and z 3 (t) = 0,
                           and
                                                  1

                                z (t)(v 1 − z 1 (t)) + √  z 1 (t)v 2 ≥ 0,∀v 1 ∈ R,v 2 ≥ 0, a.e. t ≥ 0.
                                 1
                                                  L 3 C 4
                           Setting v 1 = z 1 (t), we get
                                                z 1 (t)v 2 ,∀v 2 ≥ 0, a.e. t ≥ 0.
                           It follows by continuity that (∀t ≥ 0) : z 1 (t) ≥ 0. It follows in particular that
                           z ≥ 0. Setting v 2 = 0, we get
                            ∗
                            1
                                                   z (t) = 0, a.e. t ≥ 0.

                                                    1
                           Thus
                                                                ∗
                                                 (∀t ≥ 0) : z 1 (t) = z ≥ 0.
                                                                1
                           Thus any invariant subset of E(M, ,V ) is a subset of S(M, ). Therefore, for
                           any z 0 ∈ K,wehave

                                              lim d(z(t;0,z 0 ),S(M, )) = 0.
                                             t→+∞
   189   190   191   192   193   194   195   196   197   198   199