Page 199 - Complementarity and Variational Inequalities in Electronics
P. 199
190 Bibliography
[61] I.V. Konnov, Equilibrium Models and Variational Inequalities, Elsevier, Amsterdam, 2007.
[62] M. Kunze, Non-Smooth Dynamical Systems, Lecture Notes in Mathematics, vol. 1744,
Springer, Berlin, Heidelberg, 2000.
[63] N.G. Lloyd, Degree Theory, Cambridge Tracts in Mathematics, vol. 73, Cambridge University
Press, Cambridge, 1978.
[64] D. Leenaerts, W.M.G. van Bokhoven, Piecewise Linear Modeling and Analysis, Kluwer Aca-
demic Publishers, Norwell, MA, USA, 1998.
[65] J. Millman, C.C. Halkias, Integrated Electronics, McGraw–Hill Kogakusha, Ltd., Sydney,
1985.
[66] Y. Murakami, A method for the formulation and solution of circuits composed of switches and
linear RLC networks, IEEE Transactions on Circuits and Systems I 49 (3) (2002) 315–327.
[67] J.J. Moreau, La notion du surpotentiel et les Liaisons unilatérales en élastostatique, Comptes
Rendus de l’Académie des Sciences A 167 (1968) 954–957.
[68] J.J. Moreau, Unilateral contact and dry friction in finite freedom dynamics, in: J.J. Moreau,
P.D. Panagiotopoulos (Eds.), Nonsmooth Mechanics and Applications, in: International Centre
for Mechanical Sciences, vol. 302, Springer-Verlag, 1988.
[69] K.G. Murty, Linear Complementarity, Linear and Nonlinear Programming, Hederman Verlag,
Berlin, 1998.
[70] Z. Naniewicz, P.D. Panagiotopoulos, The Mathematical Theory of Hemivariational Inequalities
and Applications, Marcel Dekker, New York, 1994.
[71] P.D. Panagiotopoulos, Non-convex superpotentials in the sense of F.H. Clarke and applications,
Mechanics Research Communications 8 (6) (1981) 335–340.
[72] P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications. Convex and Non-
convex Energy Functions, Birkhäuser, Basel, 1985.
[73] P.D. Panagiotopoulos, Hemivariational Inequalities. Applications in Mechanics and Engineer-
ing, Springer-Verlag, Berlin, Heidelberg, 1993.
[74] J.S. Pang, Complementarity problems, in: R. Horst, P. Pardalos (Eds.), Handbook in Global
Optimization, Kluwer Academic Publishers, Boston, 1994.
[75] D. Pascali, S. Sburlan, Nonlinear Mappings of Monotone Type, Sijthoff and Noordhoff Inter-
national Publishers, Amsterdam, The Netherlands, 1978.
[76] J. Peypouquet, Convex Optimization in Normed Spaces, Theory, Methods and Examples,
Springer, Cham, 2015.
[77] V.M. Popov, Absolute stability of nonlinear systems of automatic, Control, Automation and
Remote Control 22 (8) (1962) 857–875.
[78] A. Rantzer, On the Kalman–Yakubovich–Popov lemma, Systems and Control Letters 28 (1)
(1996) 7–10.
[79] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.
[80] N. Rouche, J. Mawhin, Equations Différentielles Ordinaires, Tome 2, Masson and Cie, Paris,
1973.
[81] D.E. Stewart, Uniqueness for solutions of differential complementarity problems, Mathemati-
cal Programming A 118 (2) (2008) 327–346.
[82] D.E. Stewart, Dynamics with Inequalities, Impacts and Hard Constraints, SIAM Publishers,
Philadelphia, 2011.
[83] A. Schrijver, Theory of Linear and Integer Programming, John Wiley and Sons, New York,
1998.
[84] R.E. Showalter, Monotone Operators in Banach Spaces and Nonlinear Partial Differential
Equations, American Mathematical Society, USA, 1997.
[85] V.A. Yakubovich, Solution of certain matrix inequalities in the stability theory of nonlinear
control systems, Doklady Akademii Nauk SSSR 143 (3) (1962) 1304–1307.