Page 199 - Complementarity and Variational Inequalities in Electronics
P. 199

190  Bibliography


                           [61] I.V. Konnov, Equilibrium Models and Variational Inequalities, Elsevier, Amsterdam, 2007.
                           [62] M. Kunze, Non-Smooth Dynamical Systems, Lecture Notes in Mathematics, vol. 1744,
                              Springer, Berlin, Heidelberg, 2000.
                           [63] N.G. Lloyd, Degree Theory, Cambridge Tracts in Mathematics, vol. 73, Cambridge University
                              Press, Cambridge, 1978.
                           [64] D. Leenaerts, W.M.G. van Bokhoven, Piecewise Linear Modeling and Analysis, Kluwer Aca-
                              demic Publishers, Norwell, MA, USA, 1998.
                           [65] J. Millman, C.C. Halkias, Integrated Electronics, McGraw–Hill Kogakusha, Ltd., Sydney,
                              1985.
                           [66] Y. Murakami, A method for the formulation and solution of circuits composed of switches and
                              linear RLC networks, IEEE Transactions on Circuits and Systems I 49 (3) (2002) 315–327.
                           [67] J.J. Moreau, La notion du surpotentiel et les Liaisons unilatérales en élastostatique, Comptes
                              Rendus de l’Académie des Sciences A 167 (1968) 954–957.
                           [68] J.J. Moreau, Unilateral contact and dry friction in finite freedom dynamics, in: J.J. Moreau,
                              P.D. Panagiotopoulos (Eds.), Nonsmooth Mechanics and Applications, in: International Centre
                              for Mechanical Sciences, vol. 302, Springer-Verlag, 1988.
                           [69] K.G. Murty, Linear Complementarity, Linear and Nonlinear Programming, Hederman Verlag,
                              Berlin, 1998.
                           [70] Z. Naniewicz, P.D. Panagiotopoulos, The Mathematical Theory of Hemivariational Inequalities
                              and Applications, Marcel Dekker, New York, 1994.
                           [71] P.D. Panagiotopoulos, Non-convex superpotentials in the sense of F.H. Clarke and applications,
                              Mechanics Research Communications 8 (6) (1981) 335–340.
                           [72] P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications. Convex and Non-
                              convex Energy Functions, Birkhäuser, Basel, 1985.
                           [73] P.D. Panagiotopoulos, Hemivariational Inequalities. Applications in Mechanics and Engineer-
                              ing, Springer-Verlag, Berlin, Heidelberg, 1993.
                           [74] J.S. Pang, Complementarity problems, in: R. Horst, P. Pardalos (Eds.), Handbook in Global
                              Optimization, Kluwer Academic Publishers, Boston, 1994.
                           [75] D. Pascali, S. Sburlan, Nonlinear Mappings of Monotone Type, Sijthoff and Noordhoff Inter-
                              national Publishers, Amsterdam, The Netherlands, 1978.
                           [76] J. Peypouquet, Convex Optimization in Normed Spaces, Theory, Methods and Examples,
                              Springer, Cham, 2015.
                           [77] V.M. Popov, Absolute stability of nonlinear systems of automatic, Control, Automation and
                              Remote Control 22 (8) (1962) 857–875.
                           [78] A. Rantzer, On the Kalman–Yakubovich–Popov lemma, Systems and Control Letters 28 (1)
                              (1996) 7–10.
                           [79] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.
                           [80] N. Rouche, J. Mawhin, Equations Différentielles Ordinaires, Tome 2, Masson and Cie, Paris,
                              1973.
                           [81] D.E. Stewart, Uniqueness for solutions of differential complementarity problems, Mathemati-
                              cal Programming A 118 (2) (2008) 327–346.
                           [82] D.E. Stewart, Dynamics with Inequalities, Impacts and Hard Constraints, SIAM Publishers,
                              Philadelphia, 2011.
                           [83] A. Schrijver, Theory of Linear and Integer Programming, John Wiley and Sons, New York,
                              1998.
                           [84] R.E. Showalter, Monotone Operators in Banach Spaces and Nonlinear Partial Differential
                              Equations, American Mathematical Society, USA, 1997.
                           [85] V.A. Yakubovich, Solution of certain matrix inequalities in the stability theory of nonlinear
                              control systems, Doklady Akademii Nauk SSSR 143 (3) (1962) 1304–1307.
   194   195   196   197   198   199   200   201   202