Page 197 - Complementarity and Variational Inequalities in Electronics
P. 197
188 Bibliography
[17] H. Brézis, Problèmes unilatéraux, Journal de Mathématiques Pures et Appliquées 51 (1) (1972)
1–168.
[18] H. Brézis, Opérateurs Maximaux Monotones et Semigroupes de Contractions dans les Espaces
de Hilbert, North-Holland Publ. Co., Amsterdam and American Elsevier Publ. Co., New York,
1972.
[19] H. Brézis, L. Nirenberg, Characterizations of the ranges of some nonlinear operators and appli-
cations to boundary value problems, Annali Scuola Normale Superiore Pisa, Classe di Scienze,
Serie IV V (2) (1978) 225–326.
[20] B. Brogliato, Absolute stability and the Lagrange–Dirichlet theorem with monotone multival-
ued mappings, Systems and Control Letters 51 (5) (2004) 343–353.
[21] B. Brogliato, Some perspectives on the analysis and control of complementarity systems, IEEE
Transactions on Automatic Control 48 (6) (2003) 918–935.
[22] B. Brogliato, A. Daniilidis, C. Lemaréchal, V. Acary, On the equivalence between complemen-
tarity systems, projected systems and unilateral differential inclusions, Systems and Control
Letters 55 (1) (2006) 45–51.
[23] B. Brogliato, L. Thibault, Existence and uniqueness of solutions for non-autonomous com-
plementarity dynamical systems, in: Special Issue in the Honor of E. Attouch 60th Birthday,
Journal of Convex Analysis 17 (3–4) (2010) 961–990.
[24] B. Brogliato, D. Goeleven, Existence, uniqueness of solutions and stability of nonsmooth mul-
tivalued Lur’e dynamical systems, Journal of Convex Analysis 20 (3) (2013) 881–900.
[25] B. Brogliato, D. Goeleven, The Krakovskii–LaSalle invariance principle for a class of unilateral
dynamical systems, Mathematics of Control, Signals and Systems 17 (1) (2005) 57–76.
[26] B. Brogliato, D. Goeleven, Well-posedness, stability and invariance results for a class of multi-
valued Lur’e dynamical systems, Nonlinear Analysis, Theory, Methods and Applications 74 (1)
(2011) 195–212.
[27] B. Brogliato, R. Lozano, B.M. Maschke, O. Egeland, Dissipative Systems Analysis and Con-
trol: Theory and Applications, Communications and Control Engineering, Springer-Verlag
London, 2007.
[28] M.K. Camlibel, W.P.M.H. Heemels, J.M. Schumacher, On linear passive complementarity sys-
tems, European Journal of Control 8 (3) (2002) 220–237.
[29] M.K. Camlibel, L. Iannelli, F. Vasca, Passivity and complementarity, Mathematical Program-
ming A 145 (1–2) (2014) 531–563.
[30] M.K. Camlibel, W.P.M.H. Heemels, J.M. Schumacher, Consistency of a time-stepping method
for a class of piecewise-linear networks, IEEE Transactions on Circuits and Systems I 49 (3)
(2002) 349–357.
[31] M.K. Camlibel, J.M. Schumacher, Existence and uniqueness of solutions for a class of piece-
wise linear dynamical systems, Linear Algebra and its Applications 351–352 (2002) 147–184.
[32] M.K. Camlibel, J.M. Schumacher, Linear passive systems and maximal monotone mappings,
Mathematical Programming B 157 (2) (2015) 397–420.
[33] R.W. Cottle, J.S. Pang, R.E. Stone, The Linear Complementarity Problem, Academic Press,
New York, 1992.
[34] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
[35] P. Denoyelle, V. Acary, The Non-Smooth Approach Applied to Simulating Integrated Circuits
and Power Electronics. Evolution of Electronic Circuit Simulators Towards Fast-SPICE Per-
formance, INRIA technical report RT-0321, 2006.
[36] G. Duvaut, J.L. Lions, Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972.
[37] F. Facchinei, J.S. Pang, Finite Dimensional Variational Inequalities and Complementarity Prob-
lems, Springer-Verlag, Berlin, 2003.
[38] C. Georgescu, B. Brogliato, V. Acary, Switching, relay and complementarity systems: a tutorial
on their well-posedness and relationships, Physica D: Nonlinear Phenomena 241 (22) (2012)
1985–2002.