Page 197 - Complementarity and Variational Inequalities in Electronics
P. 197

188  Bibliography


                           [17] H. Brézis, Problèmes unilatéraux, Journal de Mathématiques Pures et Appliquées 51 (1) (1972)
                              1–168.
                           [18] H. Brézis, Opérateurs Maximaux Monotones et Semigroupes de Contractions dans les Espaces
                              de Hilbert, North-Holland Publ. Co., Amsterdam and American Elsevier Publ. Co., New York,
                              1972.
                           [19] H. Brézis, L. Nirenberg, Characterizations of the ranges of some nonlinear operators and appli-
                              cations to boundary value problems, Annali Scuola Normale Superiore Pisa, Classe di Scienze,
                              Serie IV V (2) (1978) 225–326.
                           [20] B. Brogliato, Absolute stability and the Lagrange–Dirichlet theorem with monotone multival-
                              ued mappings, Systems and Control Letters 51 (5) (2004) 343–353.
                           [21] B. Brogliato, Some perspectives on the analysis and control of complementarity systems, IEEE
                              Transactions on Automatic Control 48 (6) (2003) 918–935.
                           [22] B. Brogliato, A. Daniilidis, C. Lemaréchal, V. Acary, On the equivalence between complemen-
                              tarity systems, projected systems and unilateral differential inclusions, Systems and Control
                              Letters 55 (1) (2006) 45–51.
                           [23] B. Brogliato, L. Thibault, Existence and uniqueness of solutions for non-autonomous com-
                              plementarity dynamical systems, in: Special Issue in the Honor of E. Attouch 60th Birthday,
                              Journal of Convex Analysis 17 (3–4) (2010) 961–990.
                           [24] B. Brogliato, D. Goeleven, Existence, uniqueness of solutions and stability of nonsmooth mul-
                              tivalued Lur’e dynamical systems, Journal of Convex Analysis 20 (3) (2013) 881–900.
                           [25] B. Brogliato, D. Goeleven, The Krakovskii–LaSalle invariance principle for a class of unilateral
                              dynamical systems, Mathematics of Control, Signals and Systems 17 (1) (2005) 57–76.
                           [26] B. Brogliato, D. Goeleven, Well-posedness, stability and invariance results for a class of multi-
                              valued Lur’e dynamical systems, Nonlinear Analysis, Theory, Methods and Applications 74 (1)
                              (2011) 195–212.
                           [27] B. Brogliato, R. Lozano, B.M. Maschke, O. Egeland, Dissipative Systems Analysis and Con-
                              trol: Theory and Applications, Communications and Control Engineering, Springer-Verlag
                              London, 2007.
                           [28] M.K. Camlibel, W.P.M.H. Heemels, J.M. Schumacher, On linear passive complementarity sys-
                              tems, European Journal of Control 8 (3) (2002) 220–237.
                           [29] M.K. Camlibel, L. Iannelli, F. Vasca, Passivity and complementarity, Mathematical Program-
                              ming A 145 (1–2) (2014) 531–563.
                           [30] M.K. Camlibel, W.P.M.H. Heemels, J.M. Schumacher, Consistency of a time-stepping method
                              for a class of piecewise-linear networks, IEEE Transactions on Circuits and Systems I 49 (3)
                              (2002) 349–357.
                           [31] M.K. Camlibel, J.M. Schumacher, Existence and uniqueness of solutions for a class of piece-
                              wise linear dynamical systems, Linear Algebra and its Applications 351–352 (2002) 147–184.
                           [32] M.K. Camlibel, J.M. Schumacher, Linear passive systems and maximal monotone mappings,
                              Mathematical Programming B 157 (2) (2015) 397–420.
                           [33] R.W. Cottle, J.S. Pang, R.E. Stone, The Linear Complementarity Problem, Academic Press,
                              New York, 1992.
                           [34] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
                           [35] P. Denoyelle, V. Acary, The Non-Smooth Approach Applied to Simulating Integrated Circuits
                              and Power Electronics. Evolution of Electronic Circuit Simulators Towards Fast-SPICE Per-
                              formance, INRIA technical report RT-0321, 2006.
                           [36] G. Duvaut, J.L. Lions, Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972.
                           [37] F. Facchinei, J.S. Pang, Finite Dimensional Variational Inequalities and Complementarity Prob-
                              lems, Springer-Verlag, Berlin, 2003.
                           [38] C. Georgescu, B. Brogliato, V. Acary, Switching, relay and complementarity systems: a tutorial
                              on their well-posedness and relationships, Physica D: Nonlinear Phenomena 241 (22) (2012)
                              1985–2002.
   192   193   194   195   196   197   198   199   200   201   202