Page 196 - Complementarity and Variational Inequalities in Electronics
P. 196

Bibliography








                            [1] V. Acary, O. Bonnefon, B. Brogliato, Time-stepping numerical simulation of switched circuits
                               with the nonsmooth dynamical systems approach, IEEE Transactions on Computer-Aided De-
                               sign of Integrated Circuits and Systems 29 (7) (2010) 1042–1055.
                            [2] V. Acary, O. Bonnefon, B. Brogliato, Nonsmooth Modeling and Simulation for Switched Cir-
                               cuits, Lecture Notes in Electrical Engineering, vol. 69, Springer, Dordrecht, 2011.
                            [3] V. Acary, B. Brogliato, Numerical Methods for Nonsmooth Dynamical Systems. Applica-
                               tions in Mechanics and Electronics, Lecture Notes in Applied and Computational Mechanics,
                               vol. 35, Springer, Berlin, 2008.
                            [4] V. Acary, B. Brogliato, D. Goeleven, Higher order Moreau’s sweeping process. Mathematical
                               formulation and numerical simulation, Mathematical Programming A 113 (1) (2008) 133–217.
                            [5] K. Addi, B. Brogliato, D. Goeleven, A qualitative mathematical analysis of a class of lin-
                               ear variational inequalities via semi-complementarity problems. Applications in electronics,
                               Mathematical Programming A 126 (1) (2011) 31–67.
                            [6] K. Addi, S. Adly, B. Brogliato, D. Goeleven, A method using the approach of Moreau and
                               Panagiotopoulos for the mathematical formulation of non-regular circuits in electronics, Non-
                               linear Analysis, Series C: Hybrid Systems and Applications 1 (1) (2007) 30–43.
                            [7] K. Addi, Z. Despotovic, D. Goeleven, A. Rodic, Modelling and analysis of a non-regular elec-
                               tronic circuit via a variational inequality formulation, Applied Mathematical Modelling 35 (5)
                               (2011) 2172–2184.
                            [8] S. Adly, D. Goeleven, A stability theory for second-order nonsmooth dynamical systems with
                               applications to friction problems, Journal de Mathématiques Pures et Appliquées 83 (1) (2004)
                               17–51.
                            [9] S. Adly, D. Goeleven, B.K. Le, Stability analysis and attractivity results of a DC–DC Buck
                               converter, Set-Valued and Variational Analysis 20 (3) (2012) 331–353.
                           [10] S. Adly, R. Cibulka, Quantitative stability of a generalized equation. Application to non-regular
                               electrical circuits, Journal of Optimization Theory and Applications 160 (1) (2014) 90–110.
                           [11] S. Adly, A. Hantoute, B.K. Le, Nonsmooth Lur’e dynamical systems in Hilbert spaces, Set-
                               Valued and Variational Analysis 24 (1) (2016) 1–23.
                           [12] J.P. Aubin, Applied Functional Analysis, J. Wiley and Sons, New York, 1979.
                           [13] J.P. Aubin, A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, 1984.
                           [14] U.A. Bakshi, A.P. Godse, Electronic Devices and Circuits, Technical Publications, Pune, India,
                               2008.
                           [15] V. Barbu, T. Precupanu, Convexity and Optimization in Banach Spaces, Springer Monographs
                               in Mathematics, Springer Netherlands, 2012.
                           [16] A. Bemporad, M.K. Camlibel, W.P.M.H. Heemels, A.J. van der Schaft, J.M. Schumacher,
                               B. de Schutter, Further switched systems, in: F. Lamnabhi-Lagarrigue, J. Lunze (Eds.), Hand-
                               book of Hybrid Systems Control. Theory, Tools, Applications, Cambridge University Press,
                               2009.

                                                                                        187
   191   192   193   194   195   196   197   198   199   200   201