Page 191 - Complementarity and Variational Inequalities in Electronics
P. 191

182  Complementarity and Variational Inequalities in Electronics


                           Remark 36. We have

                                             3
                                    ∗
                                  K ={w ∈ R : w 1 = 0,w 2 ≥ 0,w 3 ≤ 0 and w 2 + αw 3 ≥ 0}.
                           Indeed,
                                                      3
                                             ∗
                                            K ={w ∈ R :
w,z ≥ 0,∀v ∈ K}.
                           Let us first suppose that

                                                                  3
                                w 1 z 1 + w 2 z 2 + w 3 z 3 ≥ 0,∀(z 1 ,z 2 ,z 3 ) ∈ R : z 2 ≥ 0 and z 3 ≤ αz 2 .
                           Setting z 2 = z 3 = 0, we get

                                                   w 1 z 1 ≥ 0,∀z 1 ∈ R,

                           and thus w 1 = 0. Setting now z 1 = z 3 = 0, we get

                                                   w 2 z 2 ≥ 0,∀z 2 ≥ 0,
                           and thus w 2 ≥ 0. Setting z 1 = z 2 = 0, we get


                                                   w 3 z 3 ≥ 0,∀z 3 ≤ 0,
                           and thus w 3 ≤ 0. Setting z 1 = 0,z 3 = αz 2 , we get

                                               (w 2 + αw 3 )z 2 ≥ 0,∀z 2 ≥ 0,

                           and thus w 2 + αw 3 ≥ 0. Let us now suppose that w 1 = 0, w 2 ≥ 0, w 3 ≤ 0, and
                           w 2 + αw 3 ≥ 0. Then, for all z 1 ∈ R, z 2 ≥ 0, and z 3 ≤ αz 2 ,wehave

                                           w 1 z 1 + w 2 z 2 + w 3 z 3 = w 2 z 2 + w 3 z 3 ,

                           and from z 3 ≤ αz 2 and w 3 ≤ 0 it follows that w 3 z 3 ≥ αw 3 z 2 . Thus

                                  w 1 z 1 + w 2 z 2 + w 3 z 3 ≥ w 2 z 2 + αw 3 z 2 = (w 2 + αw 3 )z 2 ≥ 0.

                              A stationary solution z has to satisfy
                                                ∗
                                                                 ∗
                                                             ∗
                                                       ∗
                                                  K   z ⊥ Mz ∈ K .
                           We have
                                                               ∗
                                                ∗
                                                                    ∗
                                                         ∗
                                               z ∈ K ⇔ z ≥ 0,z ≤ αz ,
                                                         2     3    2
                                                   ∗
                                                         ∗
                                                              ∗
                                                  z ⊥ Mz ⇔ z = 0.
                                                              2
   186   187   188   189   190   191   192   193   194   195   196