Page 198 - Complementarity and Variational Inequalities in Electronics
P. 198

Bibliography 189


                           [39] C. Glocker, Models of non-smooth switches in electrical systems, International Journal of Cir-
                               cuits Theory and Applications 33 (3) (2005) 205–234.
                           [40] D. Goeleven, An existence and uniqueness result for a linear mixed variational inequality aris-
                               ing in electrical circuits with transistors, Journal of Optimization Theory and Applications
                               138 (3) (2008) 397–406.
                           [41] D. Goeleven, On the solvability of linear noncoercive variational inequalities in separable
                               Hilbert spaces, Journal of Optimization Theory and Applications 79 (3) (1993) 493–511.
                           [42] D. Goeleven, B. Brogliato, Stability and instability matrices for linear evolution variational
                               inequalities, IEEE Transactions on Automatic Control 49 (4) (2004) 521–534.
                           [43] D. Goeleven, D. Motreanu, On the solvability of variational inequalities via relaxed comple-
                               mentarity problems, Communications in Applied Analysis 4 (2000) 533–546.
                           [44] D. Goeleven, D. Motreanu, Variational and Hemivariational Inequalities – Theory, Methods
                               and Applications, vol. 2: Unilateral Problems and Unilateral Mechanics, Kluwer Academic
                               Publishers, Boston, 2003.
                           [45] D. Goeleven, D. Moreanu, V. Motreanu, On the stability of stationary solution solutions of
                               first-order evolution variational inequalities, Advances in Nonlinear Variational Inequalities 6
                               (2003) 1–30.
                           [46] D. Goeleven, D. Motreanu, Y. Dumont, M. Rochdi, Variational and Hemivariational Inequali-
                               ties – Theory, Methods and Applications, vol. 1: Unilateral Analysis and Unilateral Mechanics,
                               Kluwer Academic Publishers, Boston, 2003.
                           [47] M.S. Gowda, Complementarity problems over locally compact cones, SIAM Journal on Con-
                               trol and Optimization 27 (4) (1989) 836–841.
                           [48] M.S. Gowda, I. Seidman, Generalized linear complementarity problems, Mathematical Pro-
                               gramming 46 (3) (1990) 329–340.
                           [49] W.P.M.H. Heemels, M.K. Camlibel, J.M. Schumacher, On the dynamic analysis of piecewise-
                               linear networks, IEEE Transactions on Circuits and Systems I 49 (3) (2002) 315–327.
                           [50] W.P.M.H. Heemels, M.K. Camlibel, J.M. Schumacher, B. Brogliato, Observer-based control of
                               linear complementarity systems, International Journal of Robust and Nonlinear Control 21 (10)
                               (2011) 1193–1218.
                           [51] W.P.M.H. Heemels, M.K. Camlibel, A.J. Van der Schaft, J.M. Schumacher, Well-posedness
                               of hybrid systems, in: H. Unbehauen (Ed.), Control Systems, Robotics and Automation, in:
                               Encyclopedia of Life Support Systems, Theme 6.43, Eolss Publishers, Oxford, 2004.
                           [52] W.P.M.H. Heemels, J.M. Schumacher, S. Weiland, Linear complementarity systems, SIAM J.
                               Applied Math. 60 (4) (2000) 1234–1269.
                           [53] J.B. Hiriart-Urruty, C. Lemaréchal, Fundamentals of Convex Analysis, Grundlehren Text Edi-
                               tions, Springer, Heidelberg, 2001.
                           [54] A.H. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.
                           [55] G. Isac, Complementarity Problems, Lecture Notes in Mathematics, vol. 1528, Springer-
                               Verlag, Berlin, 1992.
                           [56] G. Isac, Topological Methods in Complementarity Theory, Nonconvex Optimization and its
                               Applications, vol. 41, Springer US, 2000.
                           [57] A. Jofré, R.T. Rockafellar, R.J.-B. Wets, Variational inequalities and economic equilibrium,
                               Mathematics of Operations Research 32 (1) (2007) 32–50.
                           [58] R.E. Kalman, Lyapunov functions for the problem of Lur’e in automatic control, Proceedings
                               of the National Academy of Sciences 49 (2) (1963) 201–205.
                           [59] T. Kato, Accretive operators and nonlinear evolution equations in Banach spaces, Part 1,
                               Nonlinear Functional Analysis, in: F. Browder (Ed.), Proceedings Symposium on Nonlinear
                               Functional Analysis, American Mathematical Society, Providence, RI, 1968.
                           [60] I.V. Konnov, E.O. Volotskaya, Mixed variational inequalities and economic equilibrium prob-
                               lems, Journal of Applied Mathematics 2 (6) (2002) 289–314.
   193   194   195   196   197   198   199   200   201   202