Page 38 - Complementarity and Variational Inequalities in Electronics
P. 38

28  Complementarity and Variational Inequalities in Electronics


                           Moreover,
                                                  ⎧
                                                  ⎪ (V 1 −V 3 )
                                                  ⎪        x + V 3  if  x< 0
                                                       I 1
                                                  ⎪
                                                  ⎨
                                          ∂ϕ Z (x) =  [V 3 ,V 4 ]  if  x = 0
                                                  ⎪
                                                  ⎪
                                                  ⎩ (V 2 −V 4 )
                                                  ⎪
                                                           x + V 4  if  x> 0
                                                       I 2
                           and
                                               ⎧
                                                    I 1
                                               ⎪       (z − V 3 )  if  z< V 3
                                               ⎪
                                               ⎪ V 1 −V 3
                                               ⎨
                                         ∗
                                       ∂ϕ (z) =   0            if  V 3 ≤ z ≤ V 4
                                         Z
                                               ⎪
                                               ⎪
                                                    I 2
                                                       (z − V 4 )  if  V 4 <z.
                                               ⎪
                                               ⎩
                                                  V 2 −V 4
                           The ampere–volt characteristic of the concrete Zener diode can thus be written
                           as
                                                                        ∗
                                                       ∗
                                    V ∈ ∂ϕ Z (i) ⇐⇒ i ∈ ∂ϕ (V ) ⇐⇒ ϕ Z (i) + ϕ (V ) = iV.
                                                       Z                Z
                           2.3.5 Empirical Diode Model
                           An empirical model used in electronics to describe the ampere–volt characteris-
                           tic of a diode is
                                                   V T   i
                                             V(i) =   ln(  + 1)(i > −I S ),
                                                    η   I S
                           where I S is the saturating reverse current (10 −15  ≤ I S ≤ 10 −12  A), V T is the
                           thermodynamic voltage (25 mV), and η is the emission coefficient (1 ≤ η ≤ 2).
                           This model is usually considered in the engineering literature when a rigor-
                           ous mathematical analysis taking care of the domain of V is not required. It is
                           however possible to proceed to a suitable mathematical treatment as before in
                           defining the set-valued function V : R ⇒ R by
                                                ⎧
                                                ⎨ V T  ln(  i  + 1)  if i> −I S
                                                   η
                                          V(i) =        I S
                                                  ∅            if i ≤−I S .
                                                ⎩
                           Then setting
                                          ⎧
                                             V T   i             V T I S
                                          ⎪     ln(  + 1)(i + I S ) −  i  if i> −I S
                                              η                   η
                                          ⎪       I S
                                          ⎪
                                          ⎨
                                  ϕ ED (i) =  V T I S 2
                                              η                        if i =−I S
                                          ⎪
                                          ⎪
                                          ⎪
                                          ⎩
                                             +∞                        if i< −I S ,
                           we see that
                                               (∀i ∈ R) : V(i) = ∂ϕ ED (i).
   33   34   35   36   37   38   39   40   41   42   43