Page 34 - Complementarity and Variational Inequalities in Electronics
P. 34

24  Complementarity and Variational Inequalities in Electronics



























                           FIGURE 2.15 Complete diode model.

                           2.3.3 Complete Diode Model

                           Fig. 2.15 illustrates a complete diode model that includes the effect of the natural
                                                                                      ,the
                           resistance of the diode, called the bulk resistance, the reverse current I R 1
                           diode capacitance, and the diffusion current. This last model is more accurate
                           and represents the true operating characteristics of the diode.
                              Note that |V 4 | |V 1 |. For example, the 10ETS.. rectifier (SAFEIR series)
                           has been designed with |V 1 |= 1.1V, |V 4 |= 800–1600 V, I R1 = 0.05 mA, and
                           with a bulk resistance equal to 20 m . Let us use the notation of Fig. 2.15.Itis
                           implicitly assumed that

                                          I R2 < 0 <I R1 ,V 4 <V 2 < 0 <V 1 <V 3 .

                           Let us also set:
                                   (V 3 − V 1 )   (I R1 V 3 − I R3 V 1 )  I R1 (I R1 V 3 − I R3 V 1 )
                               α =          ,β =               ,γ =                  .
                                   (I R3 − I R1 )   (I R3 − I R1 )      2(I R3 − I R1 )
                           The electrical superpotential of the complete diode is
                                             ⎧
                                             ⎪ V 4 x + I R2 (  V 2  − V 4 )  if
                                                         2           x ≤ I R2
                                             ⎪
                                             ⎪
                                             ⎪
                                             ⎪
                                             ⎪   V 2  2
                                             ⎨     x              if  I R2 <x ≤ 0
                                                2I R2
                                     ϕ CD (x) =
                                             ⎪   V 1  2
                                             ⎪     x              if  0 <x ≤ I R1
                                             ⎪ 2I R1
                                             ⎪
                                             ⎪
                                             ⎪
                                                   2
                                             ⎩  1 αx − βx + γ     if  I R1 <x,
                                                2
   29   30   31   32   33   34   35   36   37   38   39