Page 35 - Complementarity and Variational Inequalities in Electronics
P. 35

The Convex Subdifferential Relation Chapter | 2 25


                           and simple calculations yield

                                                   ⎧
                                                   ⎪ V 4      if  x< I R2
                                                   ⎪
                                                   ⎪
                                                   ⎪ [V 4 ,V 2 ]  if  x = I R2
                                                   ⎪
                                                   ⎪
                                                   ⎪
                                                   ⎪
                                                   ⎨
                                                      V 2
                                          ∂ϕ CD (x) =   x     if  I R2 <x ≤ 0
                                                      I R2
                                                   ⎪
                                                   ⎪
                                                      V 1
                                                   ⎪
                                                   ⎪    x     if
                                                   ⎪             0 <x ≤ I R1
                                                   ⎪ I R1
                                                   ⎪
                                                   ⎪
                                                   ⎩
                                                      αx − β  if  I R1 <x.
                           On the other hand, we may compute the conjugate function
                                      ⎧
                                      ⎪ +∞                                if  z ≤ V 4
                                      ⎪
                                      ⎪
                                      ⎪
                                      ⎪
                                      ⎪        V 2
                                      ⎪
                                      ⎪ I R2 (z −  )                      if  V 4 <z ≤ V 2
                                      ⎪
                                      ⎪         2
                                      ⎪
                                      ⎪
                                      ⎪
                                      ⎪
                                      ⎨ I R2 2
                             ϕ ∗  (z) =     z                             if  V 2 <z ≤ 0
                              CD        2V 2
                                      ⎪
                                      ⎪
                                      ⎪
                                      ⎪ I R1 2
                                      ⎪
                                      ⎪     z                             if  0 <z ≤ V 1
                                      ⎪
                                      ⎪
                                      ⎪ 2V 1
                                      ⎪
                                      ⎪
                                      ⎪ 1   2               1
                                      ⎪
                                      ⎪
                                      ⎩            − αV 1 )z + V 1 (αV 1 − I 1 )  if  V 1 <z,
                                          αz + (I R 1
                                        2                   2
                           and we get
                                               ⎧
                                               ⎪ ∅                if z< V 4
                                               ⎪
                                               ⎪
                                               ⎪
                                               ⎪
                                               ⎪ ]−⇔,I R2 ]       if z = V 4
                                               ⎪
                                               ⎪
                                               ⎪
                                               ⎪
                                               ⎪
                                               ⎪ I R2             if V 4 <z ≤ V 2
                                               ⎪
                                               ⎪
                                               ⎨
                                      ∂ϕ ∗  (z) =  I R2
                                        CD           z            if V 2 <z ≤ 0
                                               ⎪
                                               ⎪ V 2
                                               ⎪
                                               ⎪
                                               ⎪
                                               ⎪
                                               ⎪ I R1
                                                     z
                                               ⎪
                                               ⎪                  if 0 <z ≤ V 1
                                               ⎪
                                               ⎪
                                               ⎪ V 1
                                               ⎪
                                               ⎪
                                                  αz + (I R1 − αV 1 )  if V 1 <z.
                                               ⎩
                           The ampere–volt characteristic of the complete diode can then be written as
                                  V ∈ ∂ϕ CD (i) ⇐⇒ i ∈ ∂ϕ ∗  (V ) ⇐⇒ ϕ CD (i) + ϕ  ∗  (V ) = iV.
                                                      CD                 CD
                           2.3.4 Zener Diode Models
                           The Zener diodes are made to permit current to flow in the reverse direction
                           if the voltage is larger than the rated breakdown or “Zener voltage” V 2 .For
                           example, for a common Zener diode, V 1   0.7 V and V 2  −7 V. The Zener
   30   31   32   33   34   35   36   37   38   39   40