Page 175 - Computational Colour Science Using MATLAB
P. 175

162                CHARACTERIZATION OF PRINTERS

                      testmat(i,13) = testrgb(i,2)*testrgb(i,2)*...
                        testrgb(i,3);
                      testmat(i,14) = testrgb(i,3)*testrgb(i,3)*...
                        testrgb(i,1);
                      testmat(i,15) = testrgb(i,3)*testrgb(i,3)*...
                        testrgb(i,2);
                      testmat(i,16) = testrgb(i,1)*testrgb(i,1)*...
                        testrgb(i,1);
                      testmat(i,17) = testrgb(i,2)*testrgb(i,2)*...
                        testrgb(i,2);
                      testmat(i,18) = testrgb(i,3)*testrgb(i,3)*...
                        testrgb(i,3);
                      testmat(i,19) = testrgb(i,1)*
                        testrgb(i,2)*testrgb(i,3);
                        testmat(i,20) = 1;
                    end

                    % implement the model for the test set
                    ptesttarget = testmat*a;

                    % convert the densities to XYZ values
                    for i = 1:144
                      ptesttarget(i,:) = exp(ptesttarget(i,:)).*white;
                    end

                    % compute the CIELAB Delta E values
                    de1 = zeros(144,1);

                    for i = 1:144
                      lab1 =; xyz2lab(testxyz(i,:),’d65___31’);
                      lab2 = xyz2lab(ptesttarget(i,:),’d65___31’);
                      de1(i,:) = cielabde(lab1, lab2);
                    end


                    % display the test results
                    perf = [min(de1) mean(de1) max(de1)]

                 The results of the third-order model are shown in Table 9.1, and it can be seen
               that the performance is rather similar to the performance of the neural network.
   170   171   172   173   174   175   176   177   178   179   180