Page 146 - Computational Fluid Dynamics for Engineers
P. 146

132               4.  Numerical  Methods  for Model  Parabolic  and Elliptic  Equations


        Example  4.7. Repeat  Example  4.5 with  the MV method  by using  two grids.  Compare
        your  results  with  SOR, GS, ADI and MV for a convergence  criterion of

                                  max \Au — F\  < e =  0~  7
                                                  =
                                                   1
        Assume that  h =  Ax  = Ay =  1/256.
                                =
                      SOR            Gauss-Seidel         ADI             MV
        h       Iter  MaxError    Iter   MaxError     Iter  MaxError   Iter  MaxError
        1/128   467   4.12E-4     16711  1.89E-4     498   4.12E-4    41   3.40E-4
        1/256   939   1.03E-4     57584   1.24E-3     1218   1.03E-4   41   5.07E-5
        1/512   1875   2.57E-5    193398  5.29E-3    2748  2.65E-5    41   1.27E-4


           Note  from  these  results that,  unlike the  other  iterative  methods,  the  conver-
        gence  rate  of  the  multigrid  methods  is  independent  of  the  mesh  size  (here  41
        cycles  are  used  for  all  h).


        References

        [1]  Crank,  J. and Nicholson,  P.,  "A Practical  Method  for Numerical  Evaluation  of  Solu-
            tions  of Partial  Differential  Equations  of the Heat-Conduction  Type,"  Proceedings  of
            the  Cambridge  Philosophical  Society,  Vol. 43, pp. 50-67,  January 1947.
        [2]  Keller,  H. B.,  "A New Difference  Scheme  for Parabolic  Problems,"  Numerical  Solution
            of  Partial  Differential  Equations,  Vol. II, ed. J.  Bramble,  Academic,  New York, 1970.
        [3]  Isaacson,  E. and Keller,  H. B.,  Analysis  of Numerical  Methods,  John  Wiley  and Sons,
            New  York, 1966.
        [4]  Peaceman,  D. W. and Rachford,  H. H., The numerical  solution  of parabolic and elliptic
            differential  equations,  SI AM  Journal,  vol. 3, p. 28-41, 1955.
        [5]  Brandt,  A.,  "Guide to multigrid  development,"  In Multigrid  Methods,  Lecture  Notes
            in  Mathematics,  Vol. 960, Springer,  New York, 1982.



        Problems

        4-1.  Show  that  the  following  forward  and  backward  difference  formulas  have
        second  order  accuracy  (see  Section  4.3).
        Forward-difference:


                          [Uxh                       +                   [   L
                            ~            2Ax             3  dx*                 '
                         1                               11     d^u
                                                    3
               {u xx)i  =  -^2  ( 2ui  ~  5  ^ + !  +  4ui + 2  ~  ^ + )  +  \2 Ax2 ~dx^  (P4.1.2)
        Backward-difference:


                           ^    =        2Ax        +  ^ ~ d ^            ( P 4  '  0 )
   141   142   143   144   145   146   147   148   149   150   151