Page 176 - Computational Fluid Dynamics for Engineers
P. 176

5.6  Finite-Volume  Methods                                           163



                      u
                          m      1/2  i    i-H  1/2
              1               i -                              N
             •      J    •            •            9           •     I
                                — -  Q i  — ^
         Fig.  E5.2. Grid  for  finite  volume.


         Solution:
         (a)  Central  differences
         First  integrate  Eq.  (E5.5.1)  [see Eq.  (2.1.24)]  in the  interval  Qi,  Xi_i/ 2  < x < Xi+1/2,  for
         the  grid  shown  in Fig. E5.2.
                                f  4-(v4)dx=  f  4-("^r)<te                (E5.5.3)
                               JQ  d%        J Q. dx \  ax  J

         Applying  central  differences  to the above  equation  yields,

                        («*) <+i/2 -  W>);-i/2 =  (y^-)  -  (v^-)          (E5.5.4)
         and
                 0Z+1 +  4>i     </>i +  fa-l    <t>i+\  — <t>i  </>i ~  <f>i-l  / —  r r\
            ^t+i/2  2      u i-i/2  g    =  ^  + 1 / 2  2 ^  ^ ~  1 / 2  A r  (E5.5.5)
        for  1 < i < N. For i =  1 and i = N, (E5.5.4)  becomes
                     02 + 01       , , nx     02 -  01      01 -  0(0)     .     .
               wi + 1/2  2   ^1-1/20(0)  =  ^ 1 + 1 / 2 — ^  ^1-1/2  A x / 2  (E5.5.6)
        and
                 i/ r x     0N +07V-1         0(L) -  0JV      07V-0/V-1   , „ _  -  -v
          ^iV+l/20W  -  UN-1/2  ~     =  ^7V + l/2  ~A~~f^  "N-l/2  "7     (E5.5.7)
        respectively.
           Rearrange  Eqs. (E5.5.6),  (E5.5.5)  and  (E5.5.7)  in the  form

         (u 1+1/2  1/1+1/2  .  2 i / i _ i / 2 \  /W1+1/2  ^1+1/2  \ ,  /  .  2 z / 1 _ i / 2 \  0(0)
         (,-2-   +  "ST  +  ~Ax-)  ^  +  \—2     Ax-)  ^  =  [ Ul -^ 2 +  -Ax-)
                                                                          (E5.5.8a)
               (  Uj-l/2  ^-1/ 2  \  /  •  /^ i + 1/2  ^ - 1 / 2  •  "i+1/2  •  ^-1/ 2  \  ,
                                                                          (E5.5.8b)


                                ,      v        .               '         (E5.5.8c)
                             =  ( - ^ + 1 / 2  +  ^ m / i ) ( A ( L )
        The  above  system  has a tridiagonal  form  and  is solved  with  the Thomas  algorithm  given
        in  Table 4.1.
           Figure  E5.3 compares  the  numerical  and  exact  solutions  for N =  10 and  shows  that
        the  numerical  solutions  oscillate  in the region  0.7 < x <  1.
         (b)  Upwind  method
        Unlike  central  differences,  the  upwind  method  represents  the  convective  term  with  the
        values  from  upstream.  Since u is positive,  we can  write
   171   172   173   174   175   176   177   178   179   180   181