Page 180 - Computational Fluid Dynamics for Engineers
P. 180

5.7  Convergence  and  Stability                                      167


                             e aAt  =  l  +     ^^[cos(k mAx)-l]            (5.7.9)


         Recalling  that
                               .  o fk rnAx\  l  1 —  cos{k mAx)
                              sin  '       —

         Eq.  (5.7.9)  becomes
                                         4aAt        fcrn^SC
                              eaAt  =  1       sin  2  /  ^m               (5.7.10)
                                            2
                                         {Ax) ""   V   2
         From  Eq.  (5.7.4)

                                                        aZ\£
                                                    =  e                   (5.7.11)
                                          pObL pi-Kiy-fi  X
         Combining  Eqs.  (5.7.4),  (5.7.10)  and  (5.7.11),  we  obtain

                    _n+l
                                                     ^m
                             a  At\      4aAt    2  /  r^m.^X
                                     1 -       sin           <  1         (5.7.12)
                                         jAx)'
         the  requirement  to  have  a  stable  solution.  The  factor
                                      4azl£  .    2fk mAx\
                                  1  —  -——TTT in                         (5.7.13)
                                            s
                                          2
                                      (Ar)      V   2   ;
         is  called  the  amplification  factor  and  will  be  denoted  by  G.  In  evaluating  the
         inequality  in  Eq.  (5.7.12),  two  possible  cases  must  be  considered.
         (l)If
                                r    4aAt   .  2  (k mAx\
                                 1  ~~  I  A  NO  S 1 1 1  ^  <  1
            then
                                   4aAt   .  2  /  k mAx
                                         sin           > 0                (5.7.14)
                                    (Ax)  ~"~  V  2
            Since 4aAt/(Ax) 2  is always positive, the condition  expressed  by Eq.  (5.7.14)
            is  always  satisfied.
         (2)  If
                                    4mAtt
                                r   4aZ\   .  o  / J L A r M
                                             o
                                                (kmAx
                                          s
                                1  —  -r-:—TTT in  '
                                        2
                                    (Ax)                 >  - 1
            then
                                  4aAt    2  /  rCm^%
                                       sin'            1  <  1            (5.7.15)
         For  the  above  condition  to  hold,
                                         aAt     1
                                                                          (5.7.16)
                                        —      ^ 2
                                        (AxY
   175   176   177   178   179   180   181   182   183   184   185