Page 177 - Computational Fluid Dynamics for Engineers
P. 177

164                        5.  Numerical  Methods  for Model  Hyperbolic  Equations



                          (W0i+l/2  = U i + i/ 2<t>i,  {u(j)) i_ 1/2  = Ui-i/ 2<l>i-l  (E5.5.9)

         and  Eq.  (E5.5.4)  is represented by
                      J.        JL         (pi+1  -  <t>i  <j>i  ~  (pi-1  / - o r tr  i n \
                 Ui+i/iQi  -  Ui-i/ 2(t>i-i  =  ^i+1/2  ~r  ^i-1/2  ~r     (E5.5.10)

         At  nodes  1 and TV, Eq. (E5.5.4)  becomes

                 Wi + l/201  -  ^1-1/20(0)  =  1/1 + 1/2  ^  -  ^1-1/2  ^  i  (E5.5.11)

         and

                    JL        JL           (f)(L)  -  (f) N  </>7V -  4>N~1  /T^C r  1 0 \
              UN + 1/2<PN -  U N-i/ 2<pN-l  =  ^iV + 1/2  ,  /g  "N-l/2  ~T  (E5.5.12)
         Express  Eqs.  (E5.5.10-12)  in a tridiagonal  form  and solve

            /       .  ^ 1 + 1/2  ^ 1 - 1 / 2  \  ,  ^ 1 + 1/2  .  /  .  ^ 1 - 1 / 2  \  , / n x  / n r r i Q  \

            ^«i +i/2 +  " ^ - + ^ j  J  <A! - -^-<h = ^«i-i/2 +  ^ - J  0(0)  (E5.5.13a)
                             -
          /         ^ - l / 2 \  ,  /    ^i+1/2  .  ^i-l/2 \  ,  ^i+1/2  ,  n  / T ^ r - i o i N


            /         VN-l/2\  ,     (        2lS N +  1/2  1/^-1/2^  ,  2^Ar  +  1 / 2
            (-tiAT-1/2  "  "  ^  J  *N-1 +  ( ^ - 1 / 2  +  — 3 ^ - +  —  ^ J  <t>N =  —^-<KL)
                                                                         (E5.5.13c)
         The  calculated  results  obtained  with  t h e  Thomas  algorithm  are given  below.  Note  that
         while the upwind  method  produces  smooth  solutions  in th e region  0.7 < x < 1, th e solu-
         tions do not agree  well  with  the  exact  solutions  in hat  region.  This  is because th e upwind
                                                  t
         scheme  is first-order  accurate.
          1.4
                          Central  differences
          1.2
            1
          0.8
          0.6              Exact solution

          0.4
                             Upwind method
          0.2  H
            0
             0      0.2   0.4    0.6   0.8
                              X
         Fig.  E 5 . 3 .  Comparison  of numerical an d exact  solutions.
   172   173   174   175   176   177   178   179   180   181   182