Page 200 - Computational Fluid Dynamics for Engineers
P. 200

188                          6.  Inviscid  Flow  Equations  for  Incompressible  Flows

         Table  6.1. Numerical  and  analytical  dimensionless  velocity  potential  results

                        £ =  --2°             £ =  =  90°            £ =  178°
         V           rnum       </>an      rnum       0 a n       Y^num        0 a n
         0.12         8.38     8.45         0.00      0.00       -8.38       -8.45
         0.2          5.16     5.20         0.00      0.00        -5.16      -5.20
         0.3          3.61     3.63         0.00      0.00       -3.61       -3.63
         0.4          2.88     2.90         0.00      0.00       -2.88       -2.90
         0.5          2.48     2.50         0.00      0.00       -2.48       -2.50
         0.6          2.25     2.26         0.00      0.00       -2.25       -2.26
         0.7          2.12     2.13         0.00      0.00       -2.12       -2.13
         0.8          2.04     2.05         0.00      0.00       -2.04       -2.05
         0.9          2.00     2.01         0.00      0.00       -2.00       -2.01
         0.98         1.99     2.00         0.00      0.00       -1.99       -2.00



                   —  Vj (numerical)
                   —  C p (numerical)
                   O  Vj (analytical)
                   A  C p (analytical)












                                   100  120  140  160  180


         Fig.  6.6.  Comparison  of  numerical  and  analytical  results  for  the  circular  cylinder.


         calculations  for  different  values  of  770 (i.e.,  0.01, 0.05,  0.1)  showed  that  in  com-
         parison  with the  analytical  results  given  by Eq.  (6.3.2), best  results are  obtained
         for  770 =  0.1, which  clearly  showed  the  importance  of  770 in  the  calculations.
            Table  6.1  shows  a  comparison  between  the  computed  and  analytical  values
         of the  dimensionless  velocity  potential  0  as  a  function  of  77  at  £ (=  9)  locations
         corresponding  to  2°,  90°  and  178°.  The  analytical  values  of  (f)  follow  from  Eq.
         (6.3.2),  which,  in terms  of  dimensionless  variables,  can  be  written  as

                                          77  H—  I  cos £                (6.3.19)


            Figure  6.6  shows  the  variation  of  the  dimensionless  circumferential  veloc-
         ity  VQ =  VQ/VOQ)  and  pressure  coefficient  C p  along  the  surface  of  the  circular
               (
   195   196   197   198   199   200   201   202   203   204   205