Page 229 - Computational Fluid Dynamics for Engineers
P. 229

218                                             7.  Boundary-Layer  Equations



         7.3.1  Numerical  Formulation

         In  order  to  express  Eqs.  (7.3.6)  and  (7.3.7)  as  a  system  of  first-order  equations,
         we  define  new  variables  u(^rj)  and  v(^rj)  by

                                          f'  =  u                        (7.3.12a)

                                                                          (7.3.12b)
         and  write  Eqs.  (7.3.6)  and  (7.3.7)  as

                        ra  + 1 „     ,„        _  /  du    df
                   /7  x/                   9x                            (7.3.12c)
                                     m
                   (H   + -y~f v   + (* -  u  ) = £  ( ^  -  ^
                        7^  =  0,  iz =  0,  f  =  f w(x);  V =  Ve,  u  =  l  (7.3.13)

         We denote the  net  points  of the  net  rectangle  shown  in Fig.  4.6,  modified  below
         due  to  a  slight  change  in  notation,  by

                         Co =  0,  £n  =  f n_!  +  fc n, n  =  1, , . . . ,  TV
                                                         2
                                                                           (7.3.14)
                          7?0 =  0,  7ft  =77 <7-_i  +  fy, j  =  l , 2 , . . . , J
         and  write  the  difference  equations  that  are  to  approximate  Eqs.  (7.3.12)  by
         considering  one  mesh  rectangle  as  in  Fig.  7.3.  We  again  start  by  writing  the
         finite-difference  approximations  of the ordinary  differential  equations  (7.3.12a,b)
                           n
         for  the  midpoint  (^ ,Tjj-1/2)  °f  the  segment  P1P27  using  centered-difference
         derivatives  (see  subsection  4.4.3),

                              ff-ff-l_,."?   +   tt?-l n
                                                    =     1 2             (7.3.15a)
                                 h,     ~     2        ^ ' - /
                              «"-«"-!   _  «" + «"_!
                                                    =  t)                 (7.3.15b)
                                                        i-1/2


           i  L
                          ^
                          7^
                                                          ^          j£
         t\*
                                                               ^---f~
         Tli-i                                       T|J-i/2            hj
                          f
                                             ^        Ui-i  "
                          n                              x „-l  x n-,/2  x n
                     <""'  X
         Fig.  7.3.  Net  rectangle  for  difference  approximations.
   224   225   226   227   228   229   230   231   232   233   234