Page 230 - Computational Fluid Dynamics for Engineers
P. 230

7.3  Numerical  Method  for  the  Standard  Problem                   219



         Similarly,  the  partial  differential  equation  (7.3.12c)  is approximated  by center-
                                      2
         ing  about  the midpoint  (^  n _ 1 ^ ,^_ 1 / 2 )  of the  rectangle  P\P*iP?>P±'  This can
                                                                  n 1//2
         be  done  in two  steps. In the  first  step  we  center  it  about  (^ ~  ,ry)  without
         specifying  77. If we  denote its left-hand  side by L, then  the  finite-difference  ap-
         proximation to Eq.  (7.3.12c) is

                     1 1    ^ - V 2 „»-V>  (""-J-'               /  fn  fn—1
            - ( I ^  + Z/ - )  =
                                                                           (7.3.16)
                       tn~l/2        ra n  + l
                                                n
                 a n  = -       ai =        +  a ,  a 2 = m n  +  a n     (7.3.17a)
                        k    '
                   Rn-l  =  _ Ln-l  + an^f vy-l  _ (^)n-l] _  mn         (7.3.17b)

                                                              n-l
                                     /
                                                           2
                                         -
                          n l
                         L ~  = (H    + ^ i / ^  + m(l-7i )               (7.3.17c)
         Eq.  (7.3.16)  can  be written as
                  n        71      2 n     n  n l n    n l n      m— 1
             [(bv)']  + axifv)  -  a 2(u )  + a (v - f  - ~ v )  = R      (7.3.18)
                                                       f
         The  identity  sign  introduces a useful  shorthand:  [ "  _ 1  means that  the  quantity
                                                      ]
         in  square  brackets  is evaluated at £ —  £ n _ 1  .
                                                         n 1 2
            We  next  center  Eq.  (7.3.18)  about  the point  (£, ~ ' ,Vj~i/2)>  that  is,  we
         choose  r\ — T7 J_ 1/ 2  a n  d obtain

                  hjHbW    - b^v^)    +  ai(fv)]_ 1/2  -  a 2(u^_ 1/2
                                                                          (7.3.19)
                        ^nf n,n—l  rn     rn—1 .,n   \ _  on—1
                               1
                         n
                                                         R
                      +« (^"l / 2/^l/2 -  ^-1/2^1/2) = :  1-1/2
         where
                R          L         n             U2                    (7.3.20a)
                 T-l/2  = - T-V2  + « M«)£},2   - ( )"-V2] - ™"

                                                                    2
          ^ Z i / 2 = [hjHbjVj  -  fcj-ivj-i)  +  ^ ( / * V i / 2  + m[l -  ( u ) , - ! / ^ } "  '
                                                                         (7.3.20b)
                                                     1
         Eqs.  (7.3.15)  and (7.3.19)  are imposed  for j = ,2,..., J  — 1 at  given  77 and
                                                 ^   —7  —7  7 ~  — ~~~  o   /
                                                        K o
                                                           o f f l ; n
                                                     +
                                                   io
                                                            "
                                                              " °
         the  transformed  boundary-layer  thickness 77 e , is to be sufficiently  large  so  that
                                                «
                                                      "
            transiormea  oounaary-iayer  tnicKness,  r] ei is to oe  sumciei
                                                                  »(7/ e )
         u  —> 1  asymptotically.  The latter  is usually  satisfied  when i;   is less  than
                          3
         approximately  10~ .
            The  boundary  conditions  [Eq.  (7.3.13)]  yield, at f = <f\
                                     /
                                /o n  = - 5  <  =  0,  t # = l            (7.3.21)
   225   226   227   228   229   230   231   232   233   234   235