Page 232 - Computational Fluid Dynamics for Engineers
P. 232

7.3  Numerical  Method  for  the  Standard  Problem                   221



                           ( So).  -  -/i-l&W  +'^& )   - ^ f -  1       (7.3.25b)



                                           ^
                                 (*3)i = f " ! » , +  « 2  „,n-l          (7.3.25c)
                                                    ^ - 1 / 2
                                        OL\  (y)  a"  „n-i
                                 *4j    2-^A   +  T V i / 2              (7.3.25d)

                                                  (")
                                      (S5)j  =  -a2MJ'                    (7.3.25e)


                                     (s 6 )i  =  -a2Mj-i                  (7.3.25f)
         The  boundary  conditions,  Eq.  (7.3.21)  become

                               Sfo  =  0,  6UQ =  0,  foxj =  0           (7.3.26)


            As discussed  in subsection  4.4.3, the  linear system  given by Eqs.  (7.3.23)  and
         (7.3.26)  again  has  a  block  tridiagonal  structure  and  can  be  written  in  matrix-
         vector  form  as  given  by  Eq.  (4.4.29)  where  now


                                 Sfj          (n)j
                           *i    8UJ    f j  =  iT2)j   0  <  j  <  J     (7.3.27)
                                              (rsh
                                 6 Vj
         and  Aj,  Bj,  Cj  are  3 x 3  matrices  defined  as

                   1  0    0              1   -hj/2     0
                   0  1    0      Ai  =  («3)j  («5)j  (Sl)j    1  <  j  <  J  - 1
                   0  - 1 -W2             0     - 1    -h j+1/2
                                                                         (7.3.28a)
                       1   -hj/2    0            - 1  -hj/2   0

             A A     (S3)j  (S5)j  {Sl)j  Bi    (s 4 )j  (s 6)j  {s 2)j  1  <  J  <  J
                       0     1     0              0     0     0
                                                                         (7.3.28b)
                                  0  0   0
                            Cj    0  0   0       0  <  j  <  J  -  1      (7.3.28c)
                                  0  1  -/ij+i/2
         Note  that  the  first  two  rows  of  AQ  and  CQ and  the  last  row  of  Aj  and  Bj
         correspond  to  the  boundary  conditions  [Eq.  (7.3.26)].  To  solve  the  continuity
         and  momentum  equations  for  different  boundary  conditions,  only  the  matrix
         rows  mentioned  above  need  altering.
   227   228   229   230   231   232   233   234   235   236   237