Page 225 - Computational Modeling in Biomedical Engineering and Medical Physics
P. 225

214   Computational Modeling in Biomedical Engineering and Medical Physics


                Morega, A.M., Dobre, A.A., Morega, M., Sandoiu, A., 2018. Constructal optimization of magnetic field
                   source in magnetic drug targeting therapy. In: Proc. of the Romanian Academy, Series A-Mathematics
                   Physics Technical Sciences Information Science, vol. 19, pp. 123 128, Special Issue: SI.
                Musielaka, M., Piotrowskia, I., Suchorsk, W.M., 2009. Superparamagnetic iron oxide nanoparticles (SPIONs)
                   as a multifunctional tool in various cancer therapies. Rep. Pract. Oncol. Radiother. 2 (4), 307 314.
                Nacev, A.N., 2013. Magnetic Drug Targeting: Developing the Basics (Doctoral thesis). The Faculty of
                   the Graduate School of the University of Maryland, College Park.
                Nacev, A.N., Beni, C., Bruno, O., Shapiro, B., 2011. The behaviors of ferromagnetic nano-particles in
                   and around blood vessels under applied magnetic fields. J. Magn. Magn. Mater. 323 (6), 651 668.
                Nedelcu, A., 2016. Electromagnetic and Heat Transfer Phenomena in Superconducting Devices (Doctoral the-
                   sis). Doctoral School of Electric Engineering, University Politehnica of Bucharest, Romania (in Romanian).
                Neuberger, T., Schöpf, B., Hofmann, H., Hofmann, M., von Rechenberg, B., 2005. Superparamagnetic
                   nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system.
                   J. Magn. Magn. Mater 293, 483 496.
                Ningbo, 2019. Tongchuang Strong Magnet Material Co., Ltd. Available from: ,https://tcmagnet.en.
                   made-in-china.com/..
                Orekhova, N.M., Akchurin, R.S., Belyaev, A.A., Smirnov, M.D., Ragimov, S.E., Orekhov, A.N., 1990.
                   Local prevention of trombosis in animal arteries by means of magnetic targeting of asp1 rin-loaded
                   red cells. Thrombosis Res. 57, 611 616.
                Osher, S., Sethian, J.A., 1988. Fronts propagating with curvature dependent speed: algorithms based on
                   Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12 49.
                Pankhurst, Q.A., Connolly, J., Jones, S.K., Dobson, J., 2003. Applications of magnetic nanoparticles in
                   biomedicine. J. Phys. D: Appl. Phys 36, R167 R181 (Topical Review).
                Papisov, M.I., Savelyev, V.Y., Sergienko, V.B., Torchilin, V.P., 1987. Magnetic drug targeting. 1. In
                   vivo kinetics of radiolabelled magnetic drug carriers. Int. J. Pharm. 40 (3), 201 206.
                Papisov, M.I., Torchilin, V.P., 1987. Magnetic drug targeting. II. Targeted drug transport by magnetic
                   microparticles: factors influencing therapeutic effect. Int. J. Pharm. 40, 207 214.
                Plavins, J., Lauva, M., 1993. Study of colloidal magnetite binding erythrocytes: prospects for cell separa-
                   tion. J. Magn. Magn. Mater 122, 349 353.
                Preis, K., Biro, O., Friedrich, M., Gottvald, A., Magele, C., 1991. Comparison of different optimization
                   strategies in the design of electromagnetic devices. IEEE Trans. Magn. 27 (5), 4154 4157.
                Price, D.N., Stromberg, L.R., Kunda, N.K., Muttil, P., 2017. In vivo pulmonary delivery and magnetic-
                   targeting of dry powder nano-in-microparticles. Mol. Pharm. 14, 4741 4750.
                Pries, A.R., Secomb, T.W., Gaehtgens, 2000. The endothelial surface layer. Pflügers Arch. Eur.
                   J. Physiol. 440, 653 666.
                Priyadharshini, S., Ponalagusamy, R., 2015. Biorheological model on flow of Herschel-Bulkley fluid
                   through a tapered arterial stenosis with dilatation. Appl. Bionics Biomech. 2015 (406195), 12 pp.
                Pyrhönen, J., Jokinen, T., Hrabovcová, V., 2009. Design of Rotating Electrical Machines. Wileycited by.
                   Available from: https://en.wikipedia.org/wiki/Neodymium_magnet.
                Quanyu, W., Xiaojie, L., Lingjiao, P., Weige, T., Chunqi, Q., 2017. Simulation analysis of blood flow
                   arteries of the human arm. Biomed. Eng.: Appl. Basis Commun. 29 (4), 1750031.
                Razavi, M.S., Shirani, E., Kassab, G.S., 2018. Scaling laws of flow rate, vessel blood volume, lengths, and
                   transit times with number of capillaries. Frontiers Physiol. 9 (581), 15 pp.
                Riegler, J., Lau, K.D., Garcia-Prieto, A., Price, A.N., Richards, T., Pankhurst, Q.A., et al., 2011.
                   Magnetic cell delivery for peripheral arterial disease: A theoretical framework. Med Phys. 38 (7),
                   3932 3943.
                Roots-Weiß, A., Papadimitriou, C., Serve, H., Hoppe, B., Koenigsmann, M., Reufi, B., et al., 1997.
                   The efficiency of tumor cell purging using immunomagnetic CD341 cell separation systems. Bone
                   Marrow Transpl. 19, 1239 1246.
                Rosensweig, R.E., 1997. Ferrohydrodynamics. Dover Publications, New York.
                Saiyed, Z.M., Telang, S.D., Ramchand, C.N., 2003. Application of magnetic techniques in the field of
                   drug discovery and biomedicine. Biomagn. Res. Technol. 1, 8 pp. Available from: http://www.bio-
                   magres.com/content/1/1/2.
   220   221   222   223   224   225   226   227   228   229   230