Page 226 - Computational Modeling in Biomedical Engineering and Medical Physics
P. 226

Magnetic drug targeting  215


                   Salazar-Alvarez, G., Muhammed, M., Zagorodni, A.A., 2006. Novel flowinjection synthesis of iron oxide
                      nanoparticles with narrowsize distribution. Chem. Eng. Sci. 61, 4625 4633.
                   S˘ andoiu, A.M., 2019. Electromagnetic Methods for Medical Therapies and Medication Management (Doctoral
                      thesis). The Doctoral School of Electrical Engineering, University Politehnica of Bucharest, Romania.
                   S˘ andoiu, A.M., Morega, A.M., Morega, M., 2019. On the constructal optimal shape of magnetic field source
                      used in magnetic drug targeting. UPB Sci. Bull. Series CElectr. Eng. Comput.Sci.81(1),171 180.
                   S˘ av˘ astru, C., 2016. Electromagnetic Field, Heat Transfer and Structural Interactions in Biomedical
                      Applications (Doctoral thesis). The Doctoral School of Electrical Engineering, University Politehnica
                      of Bucharest, Romania (in Romanian).
                   Schenck, J.F., 2000. Safety of strong, static magnetic fields. J. Magn. Reson. Imaging 12, 2 19 (Review,
                      Invited).
                   Schulze, K., Koch, A., Schopf, B., Petri, A., Steitz, B., Chastellainc, M., et al., 2005. Intra-articular appli-
                      cation of superparamagnetic nanoparticles and their uptake by synovial membrane—an experimental
                      study in sheep. J. Magn. Magn. Mater. 239 (1), 419 432.
                   Schütt, W., Grüttner, C., Häfeli, U., Zborowski, M., Teller, J., Putzar, H., et al., 1997. Applications of
                      magnetic targeting in diagnosis and therapy—possibilities and limitations: a mini-review. Hybridoma
                      16 (1), 109 117.
                   Sethian, J.A., 1996. A fast marching level set method for monotonically advancing fronts. Proc. Natl.
                      Acad. Sci. Appl. Math. 93, 1591 1595.
                   Sethian, J.A., Wiegmann, A., 2000. Structural boundary design via level set and immersed interface meth-
                      ods. J. of Comput. Phys. 163 (2), 489 528.
                   Shamsia, M., Sedaghatkish, A., Dejam, M., Saghafian, M., Mohammadia, M., Sanati-Nezha, A., 2018.
                      Magnetically assisted intraperitoneal drug delivery for cancer chemotherapy. Drug Deliv. 25 (1),
                      846 861.
                   Shamloo, A., Amani, A., Forouzandehmehr, M., Ghoytasi, I., 2019. In silico study of patient-specific
                      magnetic drug targeting for a coronary LAD atherosclerotic plaque. Int. J. Pharmaceutics 559,
                      113 129.
                   Shapiro, B., 2009. Towards dynamic control of magnetic fields to focus magnetic carriers to targets deep
                      inside the body. J. Magn. Magn. Mater. 321, 10, 1594, 13 pp.
                   Shapiro, B., Kulkarni, S., Nacev, A., Muro, S., Stepanov, P.Y., Weinberg, I.N., 2014. Open challenges
                      in magnetic drug targeting. WIREs Nanomed. Nanobiotechnol. Available from: https://doi.org/
                      10.1002/wnan.1311.
                   Sharma, S., Vkatiyar, K., Singh, U., 2015. Mathematical modeling for trajectories of magnetic nanoparti-
                      cles in a blood vessel under magnetic field. J. Magn. Magn. Mater. 379, 102 107.
                   Shaw S., Mathematical model on magnetic drug targeting in microvessel. In: Magnetism and Magnetic
                      Materials, IntechOpen, Chapter 5, pp. 83 107. ,https://doi.org/10.5772/intechopen.73678.
                      (accessed 03.20).
                   Shaw, S., Sutradhar, A., Murthy, P.V.S.N., 2017. Permeability and stress-jump effects on magnetic drug
                      targeting in a permeable microvessel using Darcy model. J. Magn. Magn. Mater. 429, 227 235.
                   Shi, D., Gu, H., 2008. Nanostructured materials for biomedical applications. J. Nanomater. Article ID
                      529890, 2 pp., (Editorial).
                   Sillerud, L.O., 2018. Quantitative [Fe]MRI determination of the dynamics of PSMA-targeted SPIONS
                      discriminates among prostate tumor Xenografts based on their PSMA expression. J. Magn. Reson.
                      Imaging. 48 (2), 469 481.
                   Singh, N., Jenkins, G.J.S., Asadi, R., Doak, S.H., 2010. Potential toxicity of superparamagnetic iron
                      oxide nanoparticles (SPION). Nano Rev. 1 (5358), 15 pp. Available from: https://doi.org/10.3402/
                      nano.v1i0.5358.
                   Singh, R., Lillard, J.W., 2009. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 86,
                      215 223 (Review).
                   Smith, N.P., Pullan, A.J., Hunter, P.J., 2002. An anatomically based model of transient coronary blood
                      flow in the heart. SIAM J. Appl. Math. 62 (3), 990 1018.
                   Soltani, M., Chen, P., 2013. Numerical modeling of interstitial fluid flow coupled with blood flow
                      through a remodeled solid tumor microvascular network. PLoS One 8 (6), e67025, pp. 18, June.
   221   222   223   224   225   226   227   228   229   230   231