Page 223 - Computational Modeling in Biomedical Engineering and Medical Physics
P. 223
212 Computational Modeling in Biomedical Engineering and Medical Physics
Gupta, P.K., Hung, C.T., 1989. Magnetically controlled targeted micro-carrier systems. Life Sci. 44,
175 186.
Hawk’s Perch Technical Writing, LLC. ,https://www.understandingnano.com/medicine.html. (accessed.03.20).
Heidarshenas, B., Wei, H., Moghimi, Z.A., Hussain, G., Baniasadi, F., Naghieh, G., 2019. Nanowires in
magnetic drug targeting. Mater. Sci. Eng. 3 (1), 3 9.
Hobbs, S.K., Monsky, W.L., Yuan, F., Roberts, W., Griffith, L., Torchilin, V.P., et al., 1998.
Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc.
Natl. Acad. Sci. USA 95, 4607 4612. April.
Hoke, I., Dahmani, C., Weyh, T., 2008. Design of a high field gradient electromagnet for magnetic drug
delivery to a mouse brain. In: Proceedings of the COMSOL Conference, Hannover.
Hoskins, P.R., Loupas, T., McDicken, W.N., 1990. A comparison of the Doppler spectra from human
blood and artificial blood used in a flow phantom. Ultrasound Med. Biol. 16 (2), 141 147.
Hunter, P.J., 1972. Numerical Simulation of Arterial Blood Flow (MS Thesis). School of Engineering,
University of Auckland.
Iacob Gh, R.O., Chiriac, H., 2004. A possibility for local targeting of magnetic carriers. J. Optoelectron.
Adv. Mater. 6 (2), 713 717.
Jones, T.B., 1995. Electromechanics of Particles. Cambridge Univ. Press.
Kaminski, M.D., Nuñez, L., Ghebremeskel, A.N., Kasza, K.E., Fischer, P.F., Chang, F.-C., et al., 2003.
Magnetically Responsive Microparticles for Targeted Drug and Radionuclide Delivery. A Review of
Recent Progress and Future Challenges. Argonne National Laboratory, Argonne, IL.
Kheirkhah, P., Denyer, S., Bhimani, A.D., Arnone, G.D., Darian, R., Esfahani, D.R., et al., 2008. Magnetic
drug targeting: a novel treatment for intramedullary spinal cord tumors. Sci. Rep. 8, 11417, 9 pp.
Koch, I., Josephson, L., 2009. Magnetic nanoparticle sensors. Sensors 9, 8130 8145.
Köstler, H., 2016. Magnetic Nanoparticle Simulation in Blood Flow (MS Thesis). Department of
Computer Science, Friedrich-Alexander University Erlangen-Nürnberg.
Kudr, J., Haddad, Y., Richtera, L., Heger, Z., Cernak, M., Adam, V., 2017. Magnetic nanoparticles:
from design and synthesis to real world applications. Nanomaterials 7 (9), 243.
Law, Y.F., Johnston, K.W., Routh, H.F., Cobbold, R.S.C., 1989. On the design and evaluation of a
steady flow model for Doppler ultrasound studies. Ultrasound Med. Biol 15 (5), 505 516.
LexInnova, 2020. Nanoparticles smart drug delivery system for cancer. Available from: ,http://www.
wipo.int/edocs/plrdocs/en/lexinnova_nanoparticles_smart_delivery_system_for_tumors.pdf..
Li, D., Ren, Y., 2018. High-gradient magnetic field for magnetic nanoparticles drug delivery system.
IEEE Trans. Appl. Supercond. 28, 6, 4420107, 7 pp. (Technical Note).
Li, S., Hoskins, P.R., Anderson, T., McDicken, W.N., 1993. Measurement of mean velocity during pul-
satile flow using time-averaged maximum frequency of Doppler ultrasound waveforms. Ultrasound
Med. Biol. 19 (2), 105 113.
Li, X.L., Yao, K.L., Liu, Z.L., 2008. CFD study on the magnetic fluid delivering in the vessel in high-
gradient magnetic field. J. Magn. Magn. Mater. 320, 1753 1758.
Lima, B.K., Tigheb, E.C., Kong, S.D., 2019. The use of magnetic targeting for drug delivery into cardiac
myocytes. J. Magn. Magn. Mater. 473, 21 25.
Lin, P.A., Kumar, A., Mohan Sankaran, R., 2012. New insights into plasma-assisted dissociation of
organometallic vapors for gas-phase synthesis of metal nanoparticles. Plasma Process Polym 9 (11-12),
1184 1193.
Liu, T.-L., 2019. A review of magnet systems for targeted drug delivery. J. Control. Release 302,
90 104.
Liu, C., Wu, S., Yan, Y., Dong, Y., Shen, X., Huang, C., 2019. Application of magnetic particles in
forensic science. Trends Anal. Chem. 121 (115674), 10 pp.
Lübbe, A.S., Bergemann, C., Riess, H., Schriever, F., Reichardt, P., Possinger, K., et al., 1996. Clinical
experiences with magnetic drug targeting: A phase I study with 4’-epidoxorubicin in 14 patients with
advanced solid tumors. J. Cancer Res. 56, 4686 4693.
Lücker, A., Secomb, T.W., Barrett, M.J.P., Weber, B., Jenny, P., 2018a. The relation between capillary
transit times and hemoglobin saturation heterogeneity. Part 2: capillary networks. Frontiers Physiol.
9 (1296), 10 pp.