Page 222 - Computational Modeling in Biomedical Engineering and Medical Physics
P. 222

Magnetic drug targeting  211


                   Avilés, M.O., Ebner, A.D., Ritter, J.A., 2008. Implant assisted-magnetic drug targeting: comparison of
                      in vitro experiments with theory. J. Magn. Magn. Mater. 320, 2704 2713.
                   Babincova, M., Babinec, P., 2009. Magnetic drug delivery and targeting: principles and applications.
                      Biomed. Pap., Med. Fac. Univ. Palacky Olomouc, Czech Repub. 153 (4), 243 250.
                   Bai, J., Wang, J.T.-W., Mei, K.-C., Al-Jamal, W.T., Al-Jama, K.T., 2016. Real-time monitoring of mag-
                      netic drug targeting using fibered confocal fluorescence microscopy. J. Control. Release 244, 240 246.
                   Barnard, A.C.L., Hunt, W.A., Timlake, W.P., Varley, E., 1966. A theory of fluid flow in compliant
                      tubes. Biophys. J. 6, 717 724.
                   Barnsley, L.C., Carugo, D., Stride, E., 2016. Optimized shapes of magnetic arrays for drug targeting
                      applications. J. Phys. D: Appl. Phys. 49 (225501), 17 pp.
                   Berry, C.C., 2009. Progress in functionalization of magnetic nanoparticles for applications in biomedicine.
                      J. Phys. D: Appl. Phys. 42, 224003, 9 pp., (Topical Review).
                   Brown T., 2020. Transcription, translation and replication. In: Nucleic Acid Structure, ATDBio, ,https://
                      www.atdbio.com/content/14/Transcription-Translation-an,d-Replication. (accessed 03.20).
                   Butoescu, N., Seemayer, C.A., Palmer, G., Guerne P.-A., Gabay, C., Doelker, E., et al., 2009. Magnetically
                      retainable microparticles for drug delivery to the joint: efficacy studies in an antigen-induced arthritis
                      model in mice. Arthritis Res. Ther. 11, R72, 10 pp. Available From: https://doi.org/10.1186/ar2701
                   Chegini, S.P., Varshosaz, J., Taymouri, S., 2018. Recent approaches for targeted drug delivery in rheu-
                      matoid arthritis diagnosis and treatment. Artif. Cells Nanomed. Biotechnol. 46 (S2), 502 514.
                   Chomoucka, J., Drbohlavova, J., Huska, D., Adam, V., Kizek, R., Hubalek, J., 2010. Magnetic nanopar-
                      ticles and targeted drug delivering. Pharmacol. Res. 62, 144 149 (Review).
                   Chuzawa, M., Mishima, F., Akiyama, Y., Nishijima, S., 2013. Precise control of the drug kinetics by
                      means of non-invasive magnetic drug delivery system. Physica C 484, 120 124.
                   Cregg, P.J., Murphy, K., Mardinoglu, A., Prin-Mello, A., 2010. Many particle magnetic dipole dipole
                      and hydrodynamic interactions in magnetizable stent assisted magnetic drug targeting. J. Magn.
                      Magn. Mater. 322, 2087 2094.
                   Cregg, P.J., Murphy, K., Mardinoglu, A., 2012. Inclusion of interactions in mathematical modelling of
                      implant assisted magnetic drug targeting. Appl. Math. Model. 36, 1 34.
                   David, A.E., Cole, A.J., Chertok, B., Park, Y.S., Yang, V.C., 2011. A combined theoretical and in vitro
                      modeling approach for predicting the magnetic capture and retention of magnetic nanoparticles
                      in vivo. J. Control. Release 152, 67 75.
                   Dobre, A.A., 2012. Investigation Methods for the Analysis of Coupled Phenomena Specific to the
                      Medical Engineering Field (Doctoral Thesis). Faculty of Electrical Engineering, University
                      Politehnica of Bucharest.
                   Dobre, A.A., Morega, A.M., 2010. Numerical simulation in magnetic drug targeting. In: The 12th
                      Mediteranean Conference on Medical and Biological Engineering and Computing, MEDICON 2010, Porto
                      Carras, Chalkidiki, Greece, May 27 30, 2010, IFMBE Proceedings, vol. 29, issue 4, pp. 651 654.
                   Drochon, A., Robin, V., Fokapu, O., Rodriguez, D.A., 2016. Stationary flow of blood in a rigid vessel
                      in the presence of an external magnetic field: considerations about the forces and wall shear stresses.
                      Appl. Math. 7, 130 136.
                   Eckert, M.A., Vu, P.Q., Zhang, K., Kang, D., Ali, M.M., Xu, C., et al., 2013. Novel molecular and
                      nanosensors for in vivo sensing. Theranostics 3 (8), 583 594.
                   Faraji, A.H., Wipf, P., 2009. Nanoparticles in cellular drug delivery. Bioorg. Med. Chem. 17,
                      2950 2962 (Review).
                   Feijóo, R.A., 2000. Computational methods in biology. In: 2nd Summer School LNCC/MCT, Petrópolis,
                      January 2000.
                   Furlani, E.J., Furlani, E.P., 2007. A model for predicting magnetic targeting of multifunctional particles in
                      the microvasculature. J. Magn. Magn. Mater. 312, 187 193.
                   Gleich, B., Hellwig, N., Bridell, H., Jurgons, R., Seliger, C., Alexiou, C., et al., 2007. Design and evalu-
                      ation of magnetic fields for nanoparticle drug targeting in cancer. IEEE Trans. Nanotechnol. 6 (2),
                      164 170.
                   Grief, A.D., Richardson, G., 2005. Mathematical modelling of magnetically targeted drug delivery.
                      J. Magn. Magn. Mater. 293, 455 463.
   217   218   219   220   221   222   223   224   225   226   227