Page 227 - Computational Modeling in Biomedical Engineering and Medical Physics
P. 227

216   Computational Modeling in Biomedical Engineering and Medical Physics


                Stanciu, D., 2016. Magnetic Drug Localization at Elbow Level (Diploma thesis). Faculty of Medical
                   Engineering, University Politehnica of Bucharest, Romania (in Romanian).
                Stem Cell Clinic. ,https://www.stemcellclinic.com/revmatoidnyj-artrit/?lang 5 en. (accesed 03.20).
                Sun, C., Jerry Lee, S.H., Zhang, M., 2008. Magnetic nanoparticles in MR imaging and drug delivery.
                   Adv. Drug Deliv. Rev. 60, 1252 1265.
                Sussman, M., Fatemi, E., Smereka, P., Osher, S., 1998. An improved level set method for incompressible
                   two-phase flows. Comput. Fluids 27 (5 6), 663 680.
                Swabb, E.A., Wei, J., Gullino, P.M., 1974. Diffusion and convection in normal and neoplastic tissues.
                   Cancer Res. 34, 2814 2822. October.
                Synovitis ,https://www.hss.edu/condition-list_synovitis.asp. (accessed 03.20).
                Thomas, R., Park, I. K., Jeong, Y.Y., 2013. Magnetic iron oxide nanoparticles for multimodal imaging
                   and therapy of cancer. Int. J. Mol. Sci. 14 (8), 15910 15930.
                Ting, T.-H., Newhouse, V.L., Li, Y., 1992. Doppler ultrasound technique for measuring capillary-speed
                   flow velocities with strong stationary echoes. Ultrasonics 30 (4), 225 231.
                Veiseh, O., Gunn, J.W., Zhang, M., 2010. Design and fabrication of magnetic nanoparticles for targeted
                   drug delivery and imaging. Adv. Drug Deliv. Rev. 62, 284 304.
                Viota, J.L., Carazo, A., Munoz-Gamez, J.A., Rudzka, K., Gómez-Sotomayor, R., Ruiz-Extremera, A.,
                   et al., 2013. Functionalized magnetic nanoparticles as vehicles for the delivery of the antitumor drug
                   gemcitabine to tumor cells. Physicochemical in vitro evaluation. Mater. Sci. Eng. C 33, 1183 1192.
                Voltairas, P.A., Fotiadis, D.I., Michalis, L.K., 2002. Hydrodynamics of magnetic drug targeting.
                   J. Biomech. 35, 813 821.
                Wang, Y.X.J., 2015. Current status of superparamagnetic iron oxide contrast agents for liver magnetic
                   resonance imaging. World J. Gastroenterol. 21 (47), 13400 13402.
                Winner, K.R.K., Steinkamp, M.P., Lee, R.J., Swat, M., Muller, C.Y., Moses, M.E., et al., 2016. Spatial
                   modeling of drug delivery routes for treatment of disseminated ovarian cancer. Cancer Res. 76 (6),
                   15. March 15.
                Xu, C., Sun, S., 2013. New forms of superparamagnetic nanoparticles for biomedical applications. Adv.
                   Drug Deliv. Rev. 65, 732 743.
                Xu, H., Song, T., Bao, X., Lili Hu, L., 2005. Site directed research of magnetic nanoparticles in mag-
                   netic drug targeting. J. Magn. Magn. Mater 293, 514 519.
                Zeeshan, A., Fatima, A., Khalid, F., Bhatti, M.M., 2018. Interaction between blood and solid particles
                   propagating through a capillary with slip effects. Microvas. Res. 119, 38 46.
                Zhan, W., Rodriguez, F., Dini, B., Dini, D., 2019. Effect of tissue permeability and drug diffusion anisot-
                   ropy on convection-enhanced delivery. Drug Deliv. 26 (1), 773 781.
                Zheng, X., Silber-Li, Z., 2009. The influence of Saffman lift force on nanoparticle concentration distri-
                   bution near a wall. Appl. Phys. Lett. 95, 124105, 3 pp.
   222   223   224   225   226   227   228   229   230   231   232