Page 139 - Computational Retinal Image Analysis
P. 139
132 CHAPTER 7 OCT layer segmentation
[7] B. Dodo, Y. Li, K. Eltayef, X. Liu, Graph-cut segmentation of retinal layers from OCT
images, in: Proceedings of the 11th International Joint Conference on Biomedical
Engineering Systems and Technologies, 2018.
[7a] S. Apostolopoulos, R. Sznitman, Efficient OCT volume reconstruction from slitlamp
microscopes, IEEE Trans. Biomed. Eng. 64 (10) (2017) 2403–2410.
[8] Y. He, A. Carass, Y. Yun, C. Zhao, B. Jedynak, S.D. Solomon, S. Saidha, P.A. Calabresi,
J.L. Prince, Towards topological correct segmentation of a macular OCT from cas-
caded FCNs, in: International Conference of Medical Image Computing and Computer
Assisted Intervention, Workshop on Ophthalmic Medical Image Analysis, 2017.
[9] M.R. Hee, J.A. Izatt, E.A. Swanson, D. Huang, J.S. Schuman, C.P. Lin, et al., Optical
coherence tomography of the human retina, Arch. Ophthalmol. 113 (1995) 325–332.
[10] A. George, J.A. Dillenseger, A. Weber, A. Pechereau, Optical coherence tomography
image processing, Invest. Ophthalmol. Vis. Sci. 41 (2000) 165–173.
[11] A.M. Bagci, M. Shahidi, R. Ansari, M. Blair, N.P. Blair, R. Zelkha, Thickness profile of
retinal layers by optical coherence tomography image segmentation, Am J. Ophthalmol.
146 (2008) 679–687.
[12] T. Fabritius, S. Makita, M. Miura, R. Myllyla, Y. Yasuno, Automated segmentation of
the macula by optical coherence tomography, Opt. Express 17 (2009) 15659–15669.
[13] M. Baroni, J.G. Fortunato, A.L. Torre, Towards quantitative analysis of retinal features
in optical coherence tomography, Med. Eng. Phys. 29 (2007) 432–441.
[14] K.L. Boyer, A. Herzog, C. Roberts, Automatic recovery of the optic nerve head geom-
etry in optical coherence tomography, IEEE Trans. Med. Imaging 25 (2006) 553–570.
[15] R. Kafieh, H. Rabbani, S. Kermani, A review of algorithms for segmentation of optical
coherence tomography from retina, J. Med. Signals Sens. 3 (2013) 45–60.
[16] M.A. Mayer, J. Hornegger, C.Y. Mardin, R.P. Tornow, Retinal nerve fiber layer seg-
mentation on FD-OCT scans of normal subjects and glaucoma patients, Biomed. Opt.
Express 1 (5) (2010) 1358–1383.
[17] Y. Boykov, O. Veksler, R. Zabih, Fast approximate energy minimization via graph cuts,
in: International Conference on Computer Vision (ICCV), vol. I, 1999, pp. 377–384.
[18] M.K. Garvin, M.D. Abràmoff, X. Wu, S.R. Russell, T.L. Burns, M. Sonka, Automated
3-D intraretinal layer segmentation of macular spectral-domain optical coherence to-
mography images, IEEE Trans. Med. Imaging 28 (9) (2009) 1436–1447, https://doi.
org/10.1109/TMI.2009.2016958.
[18a] A. Lang, A. Carass, M. Hauser, E.S. Sotirchos, P.A. Calabresi, H.S. Ying, J.L. Prince,
Retinal layer segmentation of macular OCT images using boundary classification,
Biomed. Opt. Express 4 (7) (2013) 1133–1152.
[19] P.A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Zanet, U. Wolf-Schnurrbusch,
J. Kowal, Graph-based multi-surface segmentation of OCT data using trained hard and
soft constraints, IEEE Trans. Med. Imaging 32 (2013) 531–543.
[20] A. Ben-Cohen, D. Mark, I. Kovler, D. Zur, A. Barak, M. Iglicki, R. Soferman, Retinal
Layers Segmentation Using Fully Convolutional Network in OCT Images, 2017.
[21] K. Gopinath, S.B. Rangrej, J. Sivaswamy, A deep learning framework for segmentation
of retinal layers from OCT images, in: Proceedings—4th Asian Conference on Pattern
Recognition, ACPR 2017, 2018.
[22] Y. He, A. Carass, B.M. Jedynak, S.D. Solomon, S. Saidha, P.A. Calabresi, J.L. Prince,
Topology guaranteed segmentation of the human retina from OCT using convolutional
neural networks, arXiv (2018) 1–9. preprint arXiv:1803.05120.
[23] B. Chen, Y. He, A. Carass, Y. Yun, C. Zhao, B.M. Jedynak, S.D. Solomon, J.L. Prince,
Fetal, Infant and Ophthalmic Medical Image Analysis, vol. 10554, 2017, pp. 202–209.