Page 139 - Computational Retinal Image Analysis
P. 139

132    CHAPTER 7  OCT layer segmentation




                           [7]  B. Dodo, Y. Li, K. Eltayef, X. Liu, Graph-cut segmentation of retinal layers from OCT
                              images, in: Proceedings of the 11th International Joint Conference on Biomedical
                              Engineering Systems and Technologies, 2018.
                           [7a]  S. Apostolopoulos, R. Sznitman, Efficient OCT volume reconstruction from slitlamp
                              microscopes, IEEE Trans. Biomed. Eng. 64 (10) (2017) 2403–2410.
                           [8]  Y. He, A. Carass, Y. Yun, C. Zhao, B. Jedynak, S.D. Solomon, S. Saidha, P.A. Calabresi,
                              J.L. Prince, Towards topological correct segmentation of a macular OCT from cas-
                              caded FCNs, in: International Conference of Medical Image Computing and Computer
                              Assisted Intervention, Workshop on Ophthalmic Medical Image Analysis, 2017.
                           [9]  M.R. Hee, J.A. Izatt, E.A. Swanson, D. Huang, J.S. Schuman, C.P. Lin, et al., Optical
                              coherence tomography of the human retina, Arch. Ophthalmol. 113 (1995) 325–332.
                           [10]  A. George, J.A. Dillenseger, A. Weber, A. Pechereau, Optical coherence tomography
                              image processing, Invest. Ophthalmol. Vis. Sci. 41 (2000) 165–173.
                           [11]  A.M. Bagci, M. Shahidi, R. Ansari, M. Blair, N.P. Blair, R. Zelkha, Thickness profile of
                              retinal layers by optical coherence tomography image segmentation, Am J. Ophthalmol.
                              146 (2008) 679–687.
                           [12]  T. Fabritius, S. Makita, M. Miura, R. Myllyla, Y. Yasuno, Automated segmentation of
                              the macula by optical coherence tomography, Opt. Express 17 (2009) 15659–15669.
                           [13]  M. Baroni, J.G. Fortunato, A.L. Torre, Towards quantitative analysis of retinal features
                              in optical coherence tomography, Med. Eng. Phys. 29 (2007) 432–441.
                           [14]  K.L. Boyer, A. Herzog, C. Roberts, Automatic recovery of the optic nerve head geom-
                              etry in optical coherence tomography, IEEE Trans. Med. Imaging 25 (2006) 553–570.
                           [15]  R. Kafieh, H. Rabbani, S. Kermani, A review of algorithms for segmentation of optical
                              coherence tomography from retina, J. Med. Signals Sens. 3 (2013) 45–60.
                           [16]  M.A. Mayer, J. Hornegger, C.Y. Mardin, R.P. Tornow, Retinal nerve fiber layer seg-
                              mentation on FD-OCT scans of normal subjects and glaucoma patients, Biomed. Opt.
                              Express 1 (5) (2010) 1358–1383.
                           [17]  Y. Boykov, O. Veksler, R. Zabih, Fast approximate energy minimization via graph cuts,
                              in: International Conference on Computer Vision (ICCV), vol. I, 1999, pp. 377–384.
                           [18]  M.K. Garvin, M.D. Abràmoff, X. Wu, S.R. Russell, T.L. Burns, M. Sonka, Automated
                              3-D intraretinal layer segmentation of macular spectral-domain optical coherence to-
                              mography images, IEEE Trans. Med. Imaging 28 (9) (2009) 1436–1447, https://doi.
                              org/10.1109/TMI.2009.2016958.
                          [18a]  A. Lang, A. Carass, M. Hauser, E.S. Sotirchos, P.A. Calabresi, H.S. Ying, J.L. Prince,
                              Retinal layer segmentation of macular OCT images using boundary classification,
                              Biomed. Opt. Express 4 (7) (2013) 1133–1152.
                           [19]  P.A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Zanet, U. Wolf-Schnurrbusch,
                              J. Kowal, Graph-based multi-surface segmentation of OCT data using trained hard and
                              soft constraints, IEEE Trans. Med. Imaging 32 (2013) 531–543.
                           [20]  A. Ben-Cohen, D. Mark, I. Kovler, D. Zur, A. Barak, M. Iglicki, R. Soferman, Retinal
                              Layers Segmentation Using Fully Convolutional Network in OCT Images, 2017.
                           [21]  K. Gopinath, S.B. Rangrej, J. Sivaswamy, A deep learning framework for segmentation
                              of retinal layers from OCT images, in: Proceedings—4th Asian Conference on Pattern
                              Recognition, ACPR 2017, 2018.
                           [22]  Y. He, A. Carass, B.M. Jedynak, S.D. Solomon, S. Saidha, P.A. Calabresi, J.L. Prince,
                              Topology guaranteed segmentation of the human retina from OCT using convolutional
                              neural networks, arXiv (2018) 1–9. preprint arXiv:1803.05120.
                           [23]  B. Chen, Y. He, A. Carass, Y. Yun, C. Zhao, B.M. Jedynak, S.D. Solomon, J.L. Prince,
                              Fetal, Infant and Ophthalmic Medical Image Analysis, vol. 10554, 2017, pp. 202–209.
   134   135   136   137   138   139   140   141   142   143   144