Page 140 - Computational Retinal Image Analysis
P. 140
References 133
[24] O. Ronneberger, P. Fischer, T. Brox, U-Net: convolutional networks for biomedical image
segmentation, in: N. Navab, J. Hornegger, W.M. Wells, A.F. Frangi (Eds.), Medical Image
Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International
Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III, 2015, pp. 234–241.
[25] A.G. Roy, S. Conjeti, S.P.K. Karri, D. Sheet, A. Katouzian, C. Wachinger, N. Navab,
ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomogra-
phy using fully convolutional networks, Biomed. Opt. Express 8 (8) (2017) 3627–3642.
[26] J.I. Orlando, P. Seeböck, H. Bogunović, S. Klimscha, C. Grechenig, S. Waldstein,
U. Schmidt-Erfurth, U2-Net: A Bayesian U-Net Model with Epistemic Uncertainty
Feedback for Photoreceptor Layer Segmentation in Pathological OCT Scans, 2019, pp. 2–7.
[27] F. Kiaee, H. Fahimi, R. Kafieh, A. Brandt, H. Rabbani, Three Dimensional Fully
Convolutional Networks for Segmentation of Optical Coherence Tomography Images
in Neurodegenerative Disease (1), 2018, pp. 2–4.
[28] X. Chen, M. Niemeijer, L. Zhang, K. Lee, M.D. Abramoff, M. Sonka, Three- dimen-
sional segmentation of fluid-associated abnormalities in retinal OCT: probability con-
strained graph-search-graph-cut, IEEE Trans. Med. Imaging 31 (8) (2012) 1521–1531.
[29] M. Pekala, N. Joshi, D.E. Freund, N.M. Bressler, D.C. DeBuc, P.M. Burlina, Deep
learning based retinal OCT segmentation, arXiv (2018). preprint arXiv:1801.09749.
[30] X. Liu, J. Cao, T. Fu, Z. Pan, W. Hu, K. Zhang, J. Liu, Semi-supervised automatic
segmentation of layer and fluid region in retinal optical coherence tomography images
using adversarial learning, IEEE Access 7 (2019) 3046–3061.
[31] C. Peng, X. Zhang, G. Yu, G. Luo, J. Sun, Large kernel matters—improve semantic seg-
mentation by global convolutional network, in: Proc. IEEE Conference on Computer
Vision and Pattern Recognition, July, 2017, pp. 1743–1751.
[32] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolu-
tional neural networks, in: Advances in Neural Information Processing Systems, 2012.
[33] L. Fang, D. Cunefare, C. Wang, R.H. Guymer, S. Li, S. Farsiu, Automatic segmentation
of nine retinal layer boundaries in OCT images of non-exudative AMD patients using
deep learning and graph search, Biomed. Opt. Express 8 (5) (2017) 2732.
[34] Y. Liu, G. Ren, G. Yang, X. Xi, X. Chen, Y. Yin, Fully convolutional network and
graph-based method for co-segmentation of retinal layer on macular OCT images, in:
Proceedings—International Conference on Pattern Recognition, 2018-August, 2018, pp.
3081–3085.
[35] J. Hamwood, D. Alonso-Caneiro, S.A. Read, S.J. Vincent, M.J. Collins, Effect of patch
size and network architecture on a convolutional neural network approach for automatic
segmentation of OCT retinal layers, Biomed. Opt. Express 9 (7) (2018) 3049.
[36] S. Masood, R. Fang, P. Li, H. Li, B. Sheng, A. Mathavan, W. Jia, Automatic choroid
layer segmentation from optical coherence tomography images using deep learning,
Sci. Rep. 9 (1) (2019) 1–18.
[37] X. Sui, Y. Zheng, B. Wei, H. Bi, J. Wu, X. Pan, … S. Zhang, Choroid segmentation
from optical coherence tomography with graph-edge weights learned from deep convo-
lutional neural networks, Neurocomputing 237 (2017) 332–341 (August 2016).
[38] D. Alonso-Caneiro, S.A. Read, J. Hamwood, S.J. Vincent, M.J. Collins, Use of convo-
lutional neural networks for the automatic segmentation of total retinal and choroidal
thickness in OCT images, in: Midl conference, 2018, pp. 1–7.
[39] J. Kugelman, D. Alonso-Caneiro, S.A. Read, S.J. Vincent, M.J. Collins, Automatic seg-
mentation of OCT retinal boundaries using recurrent neural networks and graph search,
Biomed. Opt. Express 9 (11) (2018) 5759.