Page 140 - Computational Retinal Image Analysis
P. 140

References  133




                    [24]  O. Ronneberger, P. Fischer, T. Brox, U-Net: convolutional networks for biomedical image
                       segmentation, in: N. Navab, J. Hornegger, W.M. Wells, A.F. Frangi (Eds.), Medical Image
                       Computing  and  Computer-Assisted  Intervention—MICCAI  2015:  18th  International
                       Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III, 2015, pp. 234–241.
                    [25]  A.G. Roy, S. Conjeti, S.P.K. Karri, D. Sheet, A. Katouzian, C. Wachinger, N. Navab,
                       ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomogra-
                       phy using fully convolutional networks, Biomed. Opt. Express 8 (8) (2017) 3627–3642.
                    [26]  J.I.  Orlando, P.  Seeböck, H.  Bogunović, S.  Klimscha, C.  Grechenig, S.  Waldstein,
                       U.  Schmidt-Erfurth, U2-Net:  A Bayesian U-Net Model with Epistemic Uncertainty
                       Feedback for Photoreceptor Layer Segmentation in Pathological OCT Scans, 2019, pp. 2–7.
                    [27]  F.  Kiaee, H.  Fahimi, R.  Kafieh,  A.  Brandt, H.  Rabbani,  Three Dimensional Fully
                       Convolutional Networks for Segmentation of Optical Coherence Tomography Images
                       in Neurodegenerative Disease (1), 2018, pp. 2–4.
                    [28]  X. Chen, M. Niemeijer, L. Zhang, K. Lee, M.D. Abramoff, M. Sonka, Three- dimen-
                       sional segmentation of fluid-associated abnormalities in retinal OCT: probability con-
                       strained graph-search-graph-cut, IEEE Trans. Med. Imaging 31 (8) (2012) 1521–1531.
                    [29]  M. Pekala, N. Joshi, D.E. Freund, N.M. Bressler, D.C. DeBuc, P.M. Burlina, Deep
                       learning based retinal OCT segmentation, arXiv (2018). preprint arXiv:1801.09749.
                    [30]  X. Liu, J. Cao, T. Fu, Z. Pan, W. Hu, K. Zhang, J. Liu, Semi-supervised automatic
                       segmentation of layer and fluid region in retinal optical coherence tomography images
                       using adversarial learning, IEEE Access 7 (2019) 3046–3061.
                    [31]  C. Peng, X. Zhang, G. Yu, G. Luo, J. Sun, Large kernel matters—improve semantic seg-
                       mentation by global convolutional network, in: Proc. IEEE Conference on Computer
                       Vision and Pattern Recognition, July, 2017, pp. 1743–1751.
                    [32]  A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolu-
                       tional neural networks, in: Advances in Neural Information Processing Systems, 2012.
                    [33]  L. Fang, D. Cunefare, C. Wang, R.H. Guymer, S. Li, S. Farsiu, Automatic segmentation
                       of nine retinal layer boundaries in OCT images of non-exudative AMD patients using
                       deep learning and graph search, Biomed. Opt. Express 8 (5) (2017) 2732.
                    [34]  Y.  Liu,  G.  Ren,  G.  Yang,  X.  Xi, X.  Chen, Y.  Yin,  Fully  convolutional  network  and
                       graph-based method for co-segmentation of retinal layer on macular OCT images, in:
                       Proceedings—International Conference on Pattern Recognition, 2018-August, 2018, pp.
                       3081–3085.
                    [35]  J. Hamwood, D. Alonso-Caneiro, S.A. Read, S.J. Vincent, M.J. Collins, Effect of patch
                       size and network architecture on a convolutional neural network approach for automatic
                       segmentation of OCT retinal layers, Biomed. Opt. Express 9 (7) (2018) 3049.
                    [36]  S. Masood, R. Fang, P. Li, H. Li, B. Sheng, A. Mathavan, W. Jia, Automatic choroid
                       layer segmentation from optical coherence tomography images using deep learning,
                       Sci. Rep. 9 (1) (2019) 1–18.
                    [37]  X. Sui, Y. Zheng, B. Wei, H. Bi, J. Wu, X. Pan, … S. Zhang, Choroid segmentation
                       from optical coherence tomography with graph-edge weights learned from deep convo-
                       lutional neural networks, Neurocomputing 237 (2017) 332–341 (August 2016).
                    [38]  D. Alonso-Caneiro, S.A. Read, J. Hamwood, S.J. Vincent, M.J. Collins, Use of convo-
                       lutional neural networks for the automatic segmentation of total retinal and choroidal
                       thickness in OCT images, in: Midl conference, 2018, pp. 1–7.
                    [39]  J. Kugelman, D. Alonso-Caneiro, S.A. Read, S.J. Vincent, M.J. Collins, Automatic seg-
                       mentation of OCT retinal boundaries using recurrent neural networks and graph search,
                       Biomed. Opt. Express 9 (11) (2018) 5759.
   135   136   137   138   139   140   141   142   143   144   145