Page 201 - Computational Retinal Image Analysis
P. 201
196 CHAPTER 10 Statistics in ophthalmology
References
[1] E.N. Brown, R.E. Kass, What is statistics? Am. Stat. 63 (2009) 105–123.
[2] M. Brunner, et al., Improving precision for detecting change in the shape of the cornea in
patients with keratoconus, Sci. Rep. 8 (2018) 12345.
[3] L.A. Wasserman, All of Statistics: A Concise Course in Statistical Inference, Springer
Science+Business Media, Inc, New York, 2004.
[4] D.G. Altman, Practical Statistics for Medical Research, Chapman and Hall, London, 1991.
[5] A. Khawaja, D. Crabb, N. Jansonious, Time to abandon over-simplified surrogates of
ocular perfusion pressure in glaucoma research, Acta Ophthalmol. 93 (1) (2015) e85.
[6] A. Khawaja, D. Crabb, N. Jansonius, The role of ocular perfusion pressure in glaucoma
cannot be studied with multivariable regression analysis applied to surrogates, Invest.
Ophthalmol. Vis. Sci. 54 (7) (2013) 4619–4620.
[7] R.J. Little, D.B. Rubin, Statistical Analysis With Missing Data, second ed., John Wiley
& Sons, Inc, New Jersey, 2014.
[8] D.B. Rubin, Multiple Imputation for Nonresponse in Surveys, John Wiley & Sons, New
York, 1987.
[9] S.G. Gadde, et al., Quantification of vessel density in retinal optical coherence tomogra-
phy angiography images using local fractal dimension, Invest. Ophthalmol. Vis. Sci. 57
(2016) 246–252.
[10] I.J. MacCormick, et al., Spatial statistical modelling of capillary non-perfusion in the
retina, Sci. Rep. 7 (2017) 16792.
[11] J. Cook, C. Bunce, C. Doré, N. Freemantle, Ophthalmic statistics note 6: effect sizes
matter, Br. J. Ophthalmol. 99 (2015) 580–581.
[12] C. Bunce, et al., Ophthalmic statistics note 1: unit of analysis, Br. J. Ophthalmol. 98
(2014) 408–412.
[13] C. Bunce, et al., Ophthalmic statistics note 2: absence of evidence is not evidence of
absence, Br. J. Ophthalmol. 98 (2014) 703–705.
[14] V. Ciprinani, et al., Ophthalmic statistics note 7: multiple hypothesis testing—to adjust
or not to adjust, Br. J. Ophthalmol. 99 (2015) 1155–1157.
[15] L. Saunders, et al., Ophthalmic statistics note 5: diagnostic tests—sensitivity and speci-
ficit, Br. J. Ophthalmol. 99 (2015) 1168–1170.
[16] J.W. Tukey, Exploratory Data Analysis, Addison-Wesley Pub., Reading, MA, 1977.
[17] P. Cumberland, et al., Ophthalmic statistics note: the perils of dichotomising continuous
variables, Br. J. Ophthalmol. 98 (2014) 841–843.
[18] C. Bunce, A. Quartilho, N. Freemantle, C. Doré, Ophthalmic statistics note 8: missing
data—exploring the unknown, Br. J. Ophthalmol. 100 (2016) 291–294.
[19] C. Bunce, J. Stephenson, C. Doré, N. Freemantle, Ophthalmic statistics note 10: data
transformations, Br. J. Ophthalmol. 100 (2016) 1591–1593.
[20] S. Skene, C. Bunce, N. Freemantle, C. Doré, Ophthalmic statistics note 9: parametric ver-
sus non-parametric methods for data analysis, Br. J. Ophthalmol. 100 (2016) 877–878.
[21] P. Armitage, G. Berry, J. Matthews, Statistical Methods in Medical Research, fourth ed.,
Wiley-Blackwell, London, 2001.
[22] C. Bunce, et al., Ophthalmic statistics note 12: multivariable or multivariate: what’s in a
name? Br. J. Ophthalmol. 101 (2017) 1303–1305.
[23] R. Nash, et al., Ophthalmic Statistics Note 4: analysing data from randomised controlled
trials with baseline and follow-up measurement, Br. J. Ophthalmol. 98 (2014) 1467–1469.
[24] S. Greenland, J. Pearl, J.M. Robins, Causal diagrams for epidemiologic research,
Epidemiology 10 (1) (1999) 37–49.